您现在的位置是: 首页 > 教育比较 教育比较

江苏高考数学答案解析,江苏高考数学试卷解析

tamoadmin 2024-06-27 人已围观

简介1.2010江苏高考数学题填空题第3,8,10,12题,详解!2.江苏2011高考数学第13题解答3.2021新高考数学试卷答案-新高考数学全国Ⅰ卷答案(含整体解析)4.2011江苏高考数学20题第二问详解5.2012江苏省高考数学答案江苏高考数学试卷答案点评和难度解析 7日下午江苏高考第二科数学考试结束。据考生反馈,今年数学的“压轴题”较难。南京市第三高级中学数学教师范书韵也表示,此次试题有一定

1.2010江苏高考数学题填空题第3,8,10,12题,详解!

2.江苏2011高考数学第13题解答

3.2021新高考数学试卷答案-新高考数学全国Ⅰ卷答案(含整体解析)

4.2011江苏高考数学20题第二问详解

5.2012江苏省高考数学答案

江苏高考数学答案解析,江苏高考数学试卷解析

江苏高考数学试卷答案点评和难度解析

7日下午江苏高考第二科数学考试结束。据考生反馈,今年数学的“压轴题”较难。南京市第三高级中学数学教师范书韵也表示,此次试题有一定区分度,比2013年江苏高考的数学试题要难一些。

范书韵同时指出,今年的数学试题仍然重视基础,考察了8个C级考点,知识点分布与往年一致。解答题前三题,分别考察了三角函数、立体几何、解析几何,相对比较基础、容易上手,从考生反馈的情况看,大部分考生这三题都比较容易上手。

后面的函数导数题、数列题则有一定难度,且每题三个小问之间难度依次增加,想全部答出不容易。此外,往年出现在试卷“上半场”的应用题今年移到了第18题(倒数第三题),难度也相应有所增加。

范书韵表示,今年总体难度应该说在考生心理预期的范围之内。在今年的《考试说明》中就曾明确指出,“有必要区分度和难度”,因此在复习及模拟考试中,老师和考生都做了一定准备。“总体而言,这是一份不错的试卷,整体结构平稳,设置一定区分度也有利于高校人才的选拔。”

2010江苏高考数学题填空题第3,8,10,12题,详解!

2010 年江苏高考数学试题 一、填空题 1、设集合A={-1,1,3},B={a+2,a 2 +4},A∩B={3},则实数a=______▲________ 2、设复数z满足z(2-3i)=6+4i(其中i为虚数单位),则z的模为______▲________ 3、盒子中有大小相同的3只小球,1只黑球,若从中随机地摸出两只球,两只球颜色不同的概率是_▲__ 4、某棉纺厂为了了解一批棉花的质量,从中随机抽取了100根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标),所得数据都在区间[5,40]中,其频率分布直方图如图所示,则其抽样的100根中,有_▲___根在棉花纤维的长度小于20mm。 5、设函数f(x)=x(e x +ae -x ),x∈ R ,是偶函数,则实数a=_______▲_________ 6、在平面直角坐标系xOy中,双曲线 上一点M,点M的横坐标是3,则M到双曲线右焦点的距离是___▲_______ 7、右图是一个算法的流程图,则输出S的值是______▲_______ 开始 S←1 n←1 S←S+2 n S≥33 n←n+1 否 输出S 结束 是 8、函数y=x 2 (x>0)的图像在点(a k ,a k 2 )处的切线与x轴交点的横坐标为a k+1 ,k为正整数,a 1 =16,则a 1 +a 3 +a 5 =____▲_____ 9、在平面直角坐标系xOy中,已知圆 上有且仅有四个点到直线12x-5y+c=0的距离为1,则实数c的取值范围是______▲_____ 10、定义在区间 上的函数y=6cosx的图像与y=5tanx的图像的交点为P,过点P作PP 1 ⊥x轴于点P 1 ,直线PP 1 与y=sinx的图像交于点P 2 ,则线段P 1 P 2 的长为_______▲_____ 11、已知函数 ,则满足不等式 的x的范围是____▲____ 12、设实数x,y满足3≤ ≤8,4≤ ≤9,则 的最大值是_____▲____ 13、在锐角三角形ABC,A、B、C的对边分别为a、b、c, ,则 __▲ 14、将边长为1的正三角形薄片,沿一条平行于底边的直线剪成两块,其中一块是梯形,记S= ,则S的最小值是_______▲_______ 二、解答题 15、(14分)在平面直角坐标系xOy中,点A(-1,-2),B(2,3),C(-2,-1) (1)求以线段AB、AC为邻边的平行四边形两条对角线的长 (2)设实数t满足( )· =0,求t的值 16、(14分)如图,四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90 0 (1)求证:PC⊥BC (2)求点A到平面PBC的距离 17、(14分)某兴趣小组测量电视塔AE的高度H(单位m),如示意图,垂直放置的标杆BC高度h=4m,仰角∠ABE=α,∠ADE=β (1)该小组已经测得一组α、β的值,tanα=1.24,tanβ=1.20,,请据此算出H的值 (2)该小组分析若干测得的数据后,发现适当调整标杆到电视塔的距离d(单位m),使α与β之差较大,可以提高测量精确度,若电视塔实际高度为125m,问d为多少时,α-β最大 A B O F 18.(16分)在平面直角坐标系 中,如图,已知椭圆 的左右顶点为A,B,右顶点为F,设过点T( )的直线TA,TB与椭圆分别交于点M , ,其中m>0, ①设动点P满足 ,求点P的轨迹 ②设 ,求点T的坐标 ③设 ,求证:直线MN必过x轴上的一定点 (其坐标与m无关) 19.(16分)设各项均为正数的数列 的前n项和为 ,已知 ,数列 是公差为 的等差数列. ①求数列 的通项公式(用 表示) ②设 为实数,对满足 的任意正整数 ,不等式 都成立。求证: 的最大值为 20.(16分)设 使定义在区间 上的函数,其导函数为 .如果存在实数 和函数 ,其中 对任意的 都有 >0,使得 ,则称函数 具有性质 . (1)设函数 ,其中 为实数 ①求证:函数 具有性质 ②求函数 的单调区间 (2)已知函数 具有性质 ,给定 , ,且 ,若| |<| |,求 的取值范围 理科附加题 21(从以下四个题中任选两个作答,每题10分) (1)几何证明选讲 AB是⊙O的直径,D为⊙O上一点,过点D作⊙O的切线交AB延长线于C,若DA=DC,求证AB=2BC (2)矩阵与变换 在平面直角坐标系xOy中,A(0,0),B(-3,),C(-2,1),设k≠0,k∈R,M= ,N= ,点A、B、C在矩阵MN对应的变换下得到点A 1 ,B 1 ,C 1 ,△A 1 B 1 C 1 的面积是△ABC面积的2倍,求实数k的值 (3)参数方程与极坐标 在极坐标系中,圆ρ=2cosθ与直线3ρcosθ+4ρsinθ+a=0相切,求实数a的值 (4)不等式证明选讲 已知实数a,b≥0,求证: 22、(10分)某厂生产甲、乙两种产品,生产甲产品一等品80%,二等品20%;生产乙产品,一等品90%,二等品10%。生产一件甲产品,如果是一等品可获利4万元,若是二等品则要亏损1万元;生产一件乙产品,如果是一等品可获利6万元,若是二等品则要亏损2万元。设生产各种产品相互独立 (1)记x(单位:万元)为生产1件甲产品和件乙产品可获得的总利润,求x的分布列 (2)求生产4件甲产品所获得的利润不少于10万元的概率 23、(10分)已知△ABC的三边长为有理数 (1)求证cosA是有理数 (2)对任意正整数n,求证cosnA也是有理数 绝密★启用前 学科网 2009年普通高等学校招生全国统一考试(江苏卷) 学科网 数学Ⅰ 学科网 注 意 事 项 考生在答题前请认真阅读本注意事项及各题答题要求 1.本试卷共4页,包含填空题(第1题——第14题)、解答题(第15题——第20题)。本卷满分160分,考试时间为120分钟。考试结束后,请将本卷和答题卡一并交回。 2.答题前,请您务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。 3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与您本人是否相符。 4.请在答题卡上按照晤顺序在对应的答题区域内作答,在其他位置作答一律无效。作答必须用0.5毫米黑色墨水的签字笔。请注意字体工整,笔迹清楚。 5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗。 6.请保持答题卡卡面清洁,不要折叠、破损。 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 参考公式: 学科网 样本数据 的方差 学科网 一、填空题:本大题共 14 小题,每小题 5 分,共 70 分。请把答案填写在答题卡相应的位置上 . 学科网 1.若复数 ,其中 是虚数单位,则复数 的实部为★. 学科网 2.已知向量 和向量 的夹角为 , ,则向量 和向量 的数量积 ★ . 学科网 3.函数 的单调减区间为 ★ . 学科网 1 1 O x y 4.函数 为常数, 在闭区间 上的图象如图所示,则 ★ . 学科网 学科网 5.现有5根竹竿,它们的长度(单位:m)分别为2.5,2.6,2.7,2.8,2.9,若从中一次随机抽取2根竹竿,则它们的长度恰好相差0.3m的概率为 ★ . 学科网 6.某校甲、乙两个班级各有5名编号为1,2,3,4,5的学生进行投篮练习,每人投10次,投中的次数如下表: 学科网 学生 1号 2号 3号 4号 5号 甲班 6 7 7 8 7 乙班 6 7 6 7 9 开始 输出 结束 Y N 则以上两组数据的方差中较小的一个为 ★ . 学科网 7.右图是一个算法的流程图,最后输出的 ★ . 学科网 8.在平面上,若两个正三角形的连长的比为1:2,则它们的面积比为1:4,类似地,在宣传部,若两个正四面体的棱长的比为1:2,则它们的体积比为 学科网 9.在平面直角坐标系 中,点P在曲线 上,且在第二象限内,已知曲线C在点P处的切线的斜率为2,则点P的坐标为 ★ . 学科网 10.已知 ,函数 ,若实数 满足 ,则 的大小关系为 ★ . 学科网 11.已知集合 , ,若 则实数 的取值范围是 ,其中 ★ . 学科网 12.设和 为不重合的两个平面,给出下列命题: 学科网 (1)若 内的两条相交直线分别平行于 内的两条直线,则 平行于 ; 学科网 (2)若 外一条直线 与 内的一条直线平行,则和 平行; 学科网 (3)设和 相交于直线 ,若 内有一条直线垂直于 ,则和 垂直; 学科网 (4)直线 与 垂直的充分必要条件是 与 内的两条直线垂直. 学科网 上面命题中,真命题的序号 ★ (写出所有真命题的序号). 学科网 13.如图,在平面直角坐标系 中, 为椭圆 的四个顶点, 为其右焦点,直线 与直线 相交于点T,线段 与椭圆的交点 恰为线段 的中点,则该椭圆的离心率为 ★ . 学科网 x y A 1 B 2 A 2 O T M 学科网 学科网 14.设 是公比为 的等比数列, ,令 若数列 有连续四项在集合 中,则 ★ . 学科网 学科网 二、解答题:本大题共 6 小题,共计 90 分,请在答题卡指定区域内作答,解答时应写出文字说明、证明或演算步骤 . 学科网 15.(本小题满分14分) 学科网 设向量 学科网 (1)若与 垂直,求 的值; 学科网 (2)求 的最大值; 学科网 (3)若 ,求证: ∥ . 学科网 16.(本小题满分14分) 学科网 A B C A 1 B 1 C 1 E F D 如图,在直三棱柱 中, 分别是 的中点,点在上, 学科网 求证:(1) ∥ 学科网 (2) 学科网 17.(本小题满分14分) 学科网 设 是公差不为零的等差数列, 为其前 项和,满足 学科网 (1)求数列 的通项公式及前 项和 ; 学科网 (2)试求所有的正整数 ,使得 为数列 中的项. 学科网 18.(本小题满分16分) 学科网 在平面直角坐标系 中,已知圆 和圆 学科网 x y O 1 1 . . 学科网 (1)若直线 过点 ,且被圆 截得的弦长为 ,求直线 的方程; 学科网 (2)设P为平面上的点,满足:存在过点P的无穷多对互相垂的直线 ,它们分别与圆 和圆 相交,且直线 被圆 截得的弦长与直线 被圆 截得的弦长相等,试求所有满足条件的点P的坐标. 学科网 19.(本小题满分16分) 学科网 按照某学者的理论,假设一个人生产某产品单件成本为 元,如果他卖出该产品的单价为 元,则他的满意度为 ;如果他买进该产品的单价为 元,则他的满意度为 .如果一个人对两种交易(卖出或买进)的满意度分别为 和 ,则他对这两种交易的综合满意度为 . 学科网 现假设甲生产A、B两种产品的单件成本分别为12元和5元,乙生产A、B两种产品的单件成本分别为3元和20元,设产品A、B的单价分别为 元和 元,甲买进A与卖出B的综合满意度为 ,乙卖出A与买进B的综合满意度为 学科网 (1) 求和 关于 、 的表达式;当时,求证: = ; 学科网 (2) 设 ,当、 分别为多少时,甲、乙两人的综合满意度均最大?最大的综合满意度为多少? 学科网 (3) 记(2)中最大的综合满意度为 ,试问能否适当选取 、 的值,使得 和 同时成立,但等号不同时成立?试说明理由。 学科网 学科网 20.(本小题满分16分) 学科网 设 为实数,函数 . 学科网 (1) 若 ,求 的取值范围; 学科网 (2) 求 的最小值; 学科网 (3) 设函数 ,直接写出(不需给出演算步骤)不等式 的解集. 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网

江苏2011高考数学第13题解答

第3题考的是古典概型很简单 答案是1/2;

第8题:因为y'=2x,所以过点(ak,ak^2)处的切线方程为y-ak^2=2ak(x-ak),又因为切线与x轴的交点为(a(k+1),0),所以a(k+1)=ak/2,即数列{an}是等比数列,首相a1=16,q=1/2,所以a3=4,a5=1.所以a1+a3+a5=21

第10题:设P(x,y),由y=6cosx y=5tanx消去y得,6cosx=5tanx =>6(cosx)^2=5sinx

=>6(sinx)^2+5sinx-6=0, =>sinx=-3/2(舍去)或2/3 因为PP1垂直于X轴,且点P,P1,P2共线

所以P1P2=sinx=2/3

第12题:将4<=x^2/y<=9两边平方得,16<=x^4/y^2<=81①,又3<=xy^2<=8 1/8<=1/xy^2<=1/3②,

由①乘②得,2<=x^3/y^4<=27,即x^3/y^4的最大值为27

希望可以帮到你·······

2021新高考数学试卷答案-新高考数学全国Ⅰ卷答案(含整体解析)

令a2=x

则原题可以看成是 1<=x<=q<=x+1<=q*q<=x+2<q*q*q

变形得 1<=x<=q …………(1)

q<=x+1<=q*q …………(2)

q*q<=x+2<=q*q*q…………(3)

将第一式都+1得,2<=x+1<=q+1

与二式 q<=x+1<=q*q 比较得 2<=q*q 和 q<=q+1 ……{4}

将第一式都+2得,3<=x+2<=q+2

与三式 q*q<=x+2<=q*q*q 比较得 3<=q*q*q 和 q*q<=q+2 ……{5}

将第二式都+1得,q+1<=x+2<=q*q+1

与三式 q*q<=x+2<=q*q*q 比较得 q+1<=q*q*q 和 q*q<=q*q+1……{6}

由{4}{5}{6}六个式子得 q大于等于三开三次

2011江苏高考数学20题第二问详解

2021年高考数学考试已经结束,各地的高考数学真题也紧接着出炉了。下面为大家整理了2021年新高考一卷数学真题及答案,供大家参考。

一、2021年新高考一卷数学真题

注:

新高考一卷适用地区:山东、河北、湖北、湖南、江苏、广东、福建(语数外)

二、2021新高考数学试卷答案

2012江苏省高考数学答案

先取n=5,再代k=3,4得

s1+s7=2(s4-s3) 1 和s2+s8=2(s5-s3)

两式相减得a2+a8=2a5

得an是等差数列即an=1+(n-1)d,

再得s2+s8=2(s5+s3),s1+s9=2(s5+s4)

两式相减得a9-a2=2a4

即7d=2+6d

所以d=2

an=2n-1

1. {1, 2, 4, 6}; 集合的简单概念。

2. 15 ; 50*3/10

3. 8; a+bi=5+3i

4. 5; 依次试验即可

5. (0, √6);根式里面大于等于0,真数大于0

6. 0.6 ;数分别为 1,-3, 9,*,$,*,$,*,$,*, ‘*’表示负数,'$'表示大于8的正数,因此小于8的数有6个。

7. 6 ; 四棱锥的体积用间接法,等于半个立方体的体积减去三棱锥A-A1B1D1的体积,为2/3半个立方体的体积,也就是1/3立方体体积,等于6

8. 2; 根据 e2=c2/a2=(m+m2+4) /m=5, 得到m2-4m+4=0, m=2

9. √2 ;设A(0,0),F(x,2); AF=(x,2),AB=(√2,0), AF*AB=√2x=√2, 所以 x=1; AE=(√2,1), BF=(1-√2,2), AE*BF=√2

10. 4 ; 由f(1/2)=f(3/2),带入得到 b=2,f(3/2)=2; 由 f(-1/2)=f(3/2)=2, 带入解析式得到a=-2;

11. 17√2/50 ; 根据二倍角公式先求出 sin(2α+π/3)=24/25, cos(2α+π/3)=7/25; sin(2α+π/12)=sin(2α+π/3-π/4)=sin(2α+π/3)cos(π/4)-cos(2α+π/3)sin(π/4)=17√2/50

12. 4/3; 数形结合法,k最大时,圆心(4,0)到直线y=kx-2的距离为2,可求k

13. 9; 由值域可知 a^2-4b=0; f(x)<c这个条件可以转化为方程x^2+ax+b-c的根为m,m+6,设根为x2,x1, 则x2-x1=6; 由(x2-x1)^2=a^2-4(b-c)=4c,所以c=9

14. [e,7]; 设 y=b/a, x=c/a ;第一个不等式化为y>=5x-3, y<=4x-1; 第二个不等式化为y>=x*exp(1/x); y>=5x-3, y<=4x-1限制y最大值为7,y>=x*exp(1/x)的单调性可以用导数研究,在1处取得最大值,并且在y>=5x-3, y<=4x-1决定的范围内,因此限制了y最小值为e;

文章标签: # 学科 # lt # 高考