您现在的位置是: 首页 > 教育比较 教育比较

数列高考考点_数列高考题汇总

tamoadmin 2024-07-01 人已围观

简介1.数列问题(高考题)越快越好,要有解答。2.急啊!!快高考了,如何学数列?3.高考中求数列的通项公式共有几种方法。4.高考数列一般会怎么考?(全国卷)5.高三总复习 数列部分 高考题 求解析6.求 高考数列各种主要题型7.高考数列题你是上海的吗?我只知道上海的。高考卷一般在填空和大题目里出数提,有时选择也有。填空一般不算难如果是最后一两道就算难了。大题数列放最后很多的,今年就是。大题一般先

1.数列问题(高考题)越快越好,要有解答。

2.急啊!!快高考了,如何学数列?

3.高考中求数列的通项公式共有几种方法。

4.高考数列一般会怎么考?(全国卷)

5.高三总复习 数列部分 高考题 求解析

6.求 高考数列各种主要题型

7.高考数列题

数列高考考点_数列高考题汇总

你是上海的吗?我只知道上海的。高考卷一般在填空和大题目里出数提,有时选择也有。填空一般不算难如果是最后一两道就算难了。大题数列放最后很多的,今年就是。大题一般先给出此数列满足的条件,一般先求数列再利用通项公式求进一步的问题。小题形式比较活说不大清。以上是形式。至于考点 掌握等比等差数列的通项公式 求和公式,无穷等比数列求和公式,即利用递推关系求通项公式,这些是必须的。另外要考好建议要掌握些特殊的求和方法:列项相消法 倒序相加法 错位相减法 分组求和法等。还要了解一些特殊数列。如等积数列等和数列等差比数列等。有助于解题

数列问题(高考题)越快越好,要有解答。

a1=1,a(n+1)=an+1/an

(1)不知道要证明啥

(2)证明√(2n-1)≤an≤√(3n-2)

(3)求正整数m使得|a2017-m|最小

(2)

经验证n=1,2,3,4时不等式都成立,假设当n=N时不等式成立,即√(2N-1)≤aN≤√(3N-2),则2N-1≤aN^2≤3N-2。

则当n=N+1时,2(N+1)-1<2N-1+2+1/(3N-2)≤a(N+1)^2=aN^2+1/aN^2+2≤3N-2+2+1/(2N-1)≤3N-2+2+1=3(N+1)-2

所以√[2(N+1)-1]≤a(N+1)≤√[3(N+1)-2]

所以当n=N+1时,不等式也成立。即对于任意正整数n,都有√(2n-1)≤an≤√(3n-2)。

(3)

由(2)可知√3969=63<√4033≤a2017≤√6049<78=√6084,

为了方便,我们把a2017往回走遍历a2016,a2015,...,an的做法叫下行,而往前遍历a2018,a2019,...,ak的做法叫上行。

1/78<a2017-a2016=1/a2016<1/63,1/78<a2018-a2017=1/a2017<1/63

则上两式表明下行时最多不超过78次,an的值就要比a2017减小1;而上行时,最少要63次ak的值才比a2017增加1.因为下行时an减小的速度会越来越快,而上行时增加的速度会越来越慢。

现在来看a(2017-78)=a1939和a(2017+63)=a2080的情况

62<√3877≤a1939≤√5815<77,<√4159≤a2080≤√6238<79

4033≤a2017^2≤6049

4033=3n-2,n=1345;6049=2n-1,n=3025,3025-1345=1680

则2689≤a1345^2≤4033,6049≤a3025^2≤9073,6049-2689=3360=1680*2,下限不计

2691≤a1346^2≤4036,6047≤a3024^2≤9070

1/4033+2≤a1346^2-a1345^2=1/a1345^2+2≤1/2689+2

1/9070+2≤a3025^2-a3024^2=1/a3024^2+2≤1/6047+2

2017-1345=672,上限为4033+672*2=5377,672/4033<误差<672/2689

3025-2017=1008,下限为6049-1008*2=4033

3025-1345=1680,4033+1680*2=7393,7393-1008*2=5377

2689=3n-2,n=897,1793≤a897^2≤2689,1795≤a898^2≤2692,

2+1/2689≤a898^2-a897^2=1/a897^2+2≤2+1/1793

2017-897=1120,2689+1120*2=4929=a2017^2上限,1120/2689<误差<1120/1793

1793=3n-2,n=599,1197≤a599^2≤1795,

2+1/1795≤a600^2-a599^2=2+1/a599^2≤2+1/1197

2017-599=1418,1795+1418*2=4633=a2017^2上限,1428/1795<误差<1418/1197

1197+1=3n-2,n=400,799≤a400^2≤1198,

2+1/1198≤a401^2-a400^2=2+1/a400^2≤2+1/799

2017-400=1617,1201+1617*2=4435=a2017^2上限,1617/1198<误差<1616/799

799=3n-2,n=267,533≤a267^2≤799,

2+1/799≤a268^2-a267^2=2+1/a267^2≤2+1/533

2017-267=1750,799+1750*2=4299=a2017^2上限,1750/799<误差<1750/533

533+1=3n-2,n=179,357≤a179^2≤535,

2+1/535≤a268^2-a267^2=2+1/a267^2≤2+1/357

2017-179=1750,535+1838*2=4211=a2017^2上限,1838/535<误差<1838/357

359-1=3n-2,n=120,239≤a120^2≤358,

2+1/358≤a121^2-a120^2=2+1/a120^2≤2+1/239

2017-120=1750,358+1897*2=4152=a2017^2上限,4<1897/358<误差<1897/239<8

到此终于可以结束了,因为a2017^2上限4152即使加上最大误差8开方后也小于.5,

而a2017^2下限4033开方后大于63.5,所以m=.

急啊!!快高考了,如何学数列?

Xn=PXn-1-QXn-2

Xn-PXn-1+QXn-2=0 --------------(1)

将其化成下面格式(待定系数法):

Xn-A*Xn-1=B(Xn-1-AXn-2) ------------(2)

将(2)式展开,然后与(1)式的各项比较得:

A+B=P -------------(3)

A*B=Q -------------(4)

因此A,B为X^2-PX+Q=0的两根.不防设A=α,B=β

Xn-α*Xn-1=β(Xn-1-αXn-2) ----------------(5)

依(5)的递推式(分别代入n-1,n-2,n-3,...,4,3得:

Xn-1-α*Xn-2=β(Xn-2-αXn-3)-----------------(5.1)

Xn-2-α*Xn-3=β(Xn-3-αXn-4)-----------------(5.2)

Xn-3-α*Xn-4=β(Xn-4-αXn-5)-----------------(5.3)

......

X4-α*X3=β(X3-αX2)-----------------(5.n-4)

X3-α*X2=β(X2-αX1)-----------------(5.n-3)

(5)*(5.1)*(5.2)*(5.3)*...*(5.n-4)*(5.n-3)并消掉相同项:

Xn-α*Xn-1=(X2-αX1)*β^(n-2)

Xn=(X2-αX1)*β^(n-2) + α*Xn-1

=(X2-αX1)*β^(n-2) + (X2-αX1)*β^(n-3)*α + α^2*Xn-2

=(X2-αX1)*β^(n-2) + (X2-αX1)*β^(n-3)*α + (X2-αX1)*β^(n-4)*α^2 + α^2*Xn-2

... ...

=(X2-αX1)*β^(n-2) + (X2-αX1)*β^(n-3)*α + (X2-αX1)*β^(n-4)*α^2+...+(X2-αX1)*β^(n-m)*α^(m-2)+...+(X2-αX1)*α^(n-2) + α^(n-1)*X1

等比数列求和(公比为:α/β) + α^(n-1)*X1

过程比较复杂,建议你参考:

斐波那挈数列通项公式的推导:

斐波那契数列:1,1,2,3,5,8,13,21……

如果设F(n)为该数列的第n项(n∈N+)。那么这句话可以写成如下形式:

F(1)=F(2)=1,F(n)=F(n-1)+F(n-2) (n≥3)

显然这是一个线性递推数列。

通项公式的推导方法一:利用特征方程

线性递推数列的特征方程为:

X^2=X+1

解得

X1=(1+√5)/2, X2=(1-√5)/2.

则F(n)=C1*X1^n + C2*X2^n

∵F(1)=F(2)=1

∴C1*X1 + C2*X2

C1*X1^2 + C2*X2^2

解得C1=1/√5,C2=-1/√5

∴F(n)=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}√5表示根号5

通项公式的推导方法二:普通方法

设常数r,s

使得F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]

则r+s=1, -rs=1

n≥3时,有

F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]

F(n-1)-r*F(n-2)=s*[F(n-2)-r*F(n-3)]

F(n-2)-r*F(n-3)=s*[F(n-3)-r*F(n-4)]

……

F(3)-r*F(2)=s*[F(2)-r*F(1)]

将以上n-2个式子相乘,得:

F(n)-r*F(n-1)=[s^(n-2)]*[F(2)-r*F(1)]

∵s=1-r,F(1)=F(2)=1

上式可化简得:

F(n)=s^(n-1)+r*F(n-1)

那么:

F(n)=s^(n-1)+r*F(n-1)

= s^(n-1) + r*s^(n-2) + r^2*F(n-2)

= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) + r^3*F(n-3)

……

= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) +……+ r^(n-2)*s + r^(n-1)*F(1)

= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) +……+ r^(n-2)*s + r^(n-1)

(这是一个以s^(n-1)为首项、以r^(n-1)为末项、r/s为公差的等比数列的各项的和)

=[s^(n-1)-r^(n-1)*r/s]/(1-r/s)

=(s^n - r^n)/(s-r)

r+s=1, -rs=1的一解为 s=(1+√5)/2, r=(1-√5)/2

则F(n)=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}

高考中求数列的通项公式共有几种方法。

求数列通项公式的常规思想方法列举(配典型例题)

数列是高考中的重点内容之一,每年的高考题都会考察到,小题一般较易,大题一般较难。而作为给出数列的一种形式——通项公式,在求数列问题中尤其重要。本文给出了求数列通项公式的常用方法。

一. 观察法

例1:根据数列的前4项,写出它的一个通项公式:

(1)9,99,999,9999,…

(2)

(3)

(4)

解:(1)变形为:101-1,102―1,103―1,104―1,……

∴通项公式为:

(2) (3) (4) .

观察各项的特点,关键是找出各项与项数n的关系。

二、定义法

例2: 已知数列{an}是公差为d的等差数列,数列{bn}是公比为q的(q∈R且q≠1)的等比数列,若函数f (x) = (x-1)2,且a1 = f (d-1),a3 = f (d+1),b1 = f (q+1),b3 = f (q-1),

(1)求数列{ a n }和{ b n }的通项公式;

解:(1)∵a 1=f (d-1) = (d-2)2,a 3 = f (d+1)= d 2,

∴a3-a1=d2-(d-2)2=2d,

∴d=2,∴an=a1+(n-1)d = 2(n-1);又b1= f (q+1)= q2,b3 =f (q-1)=(q-2)2,

∴ =q2,由q∈R,且q≠1,得q=-2,

∴bn=b?qn-1=4?(-2)n-1

当已知数列为等差或等比数列时,可直接利用等差或等比数列的通项公式,只需求得首项及公差公比。

三、 叠加法

例3:已知数列6,9,14,21,30,…求此数列的一个通项。

解 易知

……

各式相加得 ∴

一般地,对于型如 类的通项公式,只要 能进行求和,则宜采用此方法求解。

四、叠乘法

例4:在数列{ }中, =1, (n+1)? =n? ,求 的表达式。

解:由(n+1)? =n? 得 ,

= … = 所以

一般地,对于型如 = (n)? 类的通项公式,当 的值可以求得时,宜采用此方法。

五、公式法

若已知数列的前 项和 与 的关系,求数列 的通项 可用公式

求解。

例5:已知下列两数列 的前n项和sn的公式,求 的通项公式。

(1) 。 (2)

解: (1)

= = =3

此时, 。∴ =3 为所求数列的通项公式。

(2) ,当 时

由于 不适合于此等式 。 ∴

注意要先分n=1和 两种情况分别进行运算,然后验证能否统一。

例6. 设数列 的首项为a1=1,前n项和Sn满足关系

求证:数列 是等比数列。

解析:因为

所以

所以,数列 是等比数列。

六、阶差法

例7.已知数列 的前 项和 与 的关系是

,其中b是与n无关的常数,且 。

求出用n和b表示的an的关系式。

解析:首先由公式: 得:

利用阶差法要注意:递推公式中某一项的下标与其系数的指数的关系,即

其和为 。

七、待定系数法

例8:设数列 的各项是一个等差数列与一个等比数列对应项的和,若c1=2,c2=4,c3=7,c4=12,求通项公式cn

解:设

点评:用待定系数法解题时,常先假定通项公式或前n项和公式为某一多项式,一般地,若数列 为等差数列:则 , (b、c为常数),若数列 为等比数列,则 , 。

八、 辅助数列法

有些数列本身并不是等差或等比数列,但可以经过适当的变形,构造出一个新的数列为等差或等比数列,从而利用这个数列求其通项公式。

例9.在数列 中, , , ,求 。

解析:在 两边减去 ,得

∴ 是以 为首项,以 为公比的等比数列,

∴ ,由累加法得

=

= … = =

=

例10.(2003年全国高考题)设 为常数,且 ( ),

证明:对任意n≥1,

证明:设,

用 代入可得

∴ 是公比为 ,首项为 的等比数列,

∴ ( ),

即:

型如an+1=pan+f(n) (p为常数且p≠0, p≠1)可用转化为等比数列等.

(1)f(n)= q (q为常数),可转化为an+1+k=p(an+k),得{ an+k }是以a1+k为首项,p为公比的等比数列。

例11:已知数 的递推关系为 ,且 求通项 。

解:∵ ∴

则辅助数列 是公比为2的等比数列

∴ 即 ∴

例12: 已知数列{ }中 且 ( ),,求数列的通项公式。

解:∵

∴ , 设 ,则

故{ }是以 为首项,1为公差的等差数列

∴ ∴

例13.(07全国卷Ⅱ理21)设数列 的首项 .

(1)求 的通项公式;

解:(1)由

整理得 .

又 ,所以 是首项为 ,公比为 的等比数列,得

注:一般地,对递推关系式an+1=pan+q (p、q为常数且,p≠0,p≠1)可等价地改写成

则{ }成等比数列,实际上,这里的 是特征方程x=px+q的根。

(2) f(n)为等比数列,如f(n)= qn (q为常数) ,两边同除以qn,得 ,令bn= ,可转化为bn+1=pbn+q的形式。

例14.已知数列{an}中,a1= , an+1= an+( )n+1,求an的通项公式。

解:an+1= an+( )n+1 乘以2n+1 得 2n+1an+1= (2nan)+1 令bn=2nan 则 bn+1= bn+1

易得 bn= 即 2nan=

∴ an=

(3) f(n)为等差数列

例15.已知已知数列{an}中,a1=1,an+1+an=3+2 n,求an的通项公式。

解:∵ an+1+an=3+2 n,an+2+an+1=3+2(n+1),两式相减得an+2-an=2

因此得,a2n+1=1+2(n-1), a2n=4+2(n-1), ∴ an= 。

注:一般地,这类数列是递推数列的重点与难点内容,要理解掌握。

(4) f(n)为非等差数列,非等比数列

例16.(07天津卷理)在数列 中, ,其中 .

(Ⅰ)求数列 的通项公式;

解:由 , ,

可得 ,

所以 为等差数列,其公差为1,首项为0,故 ,所以数列 的通项公式为 .

这种方法类似于换元法, 主要用于已知递推关系式求通项公式。

九、归纳、猜想

如果给出了数列的前几项或能求出数列的前几项,我们可以根据前几项的规律,归纳猜想出数列的通项公式,然后再用数学归纳法证明之。

例17.(2002年北京春季高考)已知点的序列 ,其中 , , 是线段 的中点, 是线段 的中点,…, 是线段 的中点,…

(1) 写出 与 之间的关系式( )。

(2) 设 ,计算 ,由此推测 的通项公式,并加以证明。

(3) 略

解析:(1)∵ 是线段 的中点, ∴

(2) ,

= ,

= ,

猜想 ,下面用数学归纳法证明

当n=1时, 显然成立;

假设n=k时命题成立,即

则n=k+1时, =

=

∴ 当n=k+1时命题也成立,∴ 命题对任意 都成立。

例18:在数列{ }中, ,则 的表达式为 。

分析:因为 ,所以得: ,

猜想: 。

十、倒数法

数列有形如 的关系,可在等式两边同乘以 先求出

例19.设数列 满足 求

解:原条件变形为 两边同乘以 得 .

综而言之,等差、等比数列是两类最基本的数列,是数列部分的重点,自然也是高考考查的热点,而考查的目的在于测试灵活运用知识的能力,这个“灵活”往往集中在“转化”的水平上;以上介绍的仅是常见可求通项基本方法,同学们应该在学习不断的探索才能灵活的应用.只要大家认真的分析求通项公式并不困难.

高考数列一般会怎么考?(全国卷)

高考中求数列的通项公式主要有以下七种方法,具体情况说明如下:

1.

公式法,当题意中知道,某数列的前n项和sn,则可以根据公式求得an=sn-s(n-1).

2.

待定系数法:若题目特征符合递推关系式a1=A,an+1=Ban+C(A,B,C均为常数,B≠1,C≠0)时,可用待定系数法构造等比数列求其通项公式。

3.

逐项相加法:若题目特征符合递推关系式a1=A(A为常数),an+1=an+f(n)时,可用逐差相加法求数列的通项公式。

4.

逐项连乘法:若题目特征符合递推关系式a1=A(A为常数),an+1=f(n)?an时,可用逐比连乘法求数列的通项公式。

5.

倒数法:若题目特征符合递推关系式a1=A,Ban+Can+1+Dan·an+1=0,(A,B,C,D均为常数)时,可用倒数法求数列的通项公式。

6.

其他观察法或归纳法等。

高三总复习 数列部分 高考题 求解析

高考都结合等差等比的基本公式,前N项和公式,错位相减,累计求和等,还有对于没位错一个公比的还可以乘公比最后相减,有时候他想难你就加点对于函数感念的考察,也就这么多,再多就出纲了吧,我遇到的都是这些,数列不难的,多练,见点题型,很好做的,祝你成功!!!

求 高考数列各种主要题型

7.设Sn是等差数列{an}的前n项和,若a5/a3=5/9,则S9/S5=多少?

∵{an}是等差数列

∴S9=(a1+a9)*9/2=2*9a5/2=9a5

S5=(a1+a5)*5/2=2a3*5/2=5a3

∴S9/S5=9a5/(5a3)=9/5*5/9=1

8.∵{an}等差数列的前n项之和,

∴ S4=4a1+6d , S8=8a1+8*7d/2=8a1+28d

∵ S4/S8=1/3

∴3(4a1+6d)=8a1+28d

∴ 2a1=5d

∴S8/S16=(8a1+28d)/(16a1+120d)

=48d/(160d)=3/10

法2:

∵ S8=3S4 ,

∴ S8-S4=2S4 ,

S12-S8=3S4 ,

S16-S12=4S4

∴S16-S4=9S4

∴S16=10S4

∴S8/S16=3/10

9.(04全国卷一文17)等差数列{an}的前n项和记为Sn已知a10=30,a20=50.

(1)求通项an;

∵ 等差数列{an} a10=30,a20=50.

∴a1+9d=30 ,a1+19d=50

∴d=2,a1=12

∴an=12+2(n-1)=2n+10

(2)

∵Sn=242

∴(12+2n+10)n/2=242

∴(n+11)n=22×11

∴n=11

高考数列题

求数列通项公式的常规思想方法列举(配典型例题)

数列是高考中的重点内容之一,每年的高考题都会考察到,小题一般较易,大题一般较难。而作为给出数列的一种形式——通项公式,在求数列问题中尤其重要。本文给出了求数列通项公式的常用方法。

一. 观察法

例1:根据数列的前4项,写出它的一个通项公式:

(1)9,99,999,9999,…

(2)

(3)

(4)

解:(1)变形为:101-1,102―1,103―1,104―1,……

∴通项公式为:

(2) (3) (4) .

观察各项的特点,关键是找出各项与项数n的关系。

二、定义法

例2: 已知数列{an}是公差为d的等差数列,数列{bn}是公比为q的(q∈R且q≠1)的等比数列,若函数f (x) = (x-1)2,且a1 = f (d-1),a3 = f (d+1),b1 = f (q+1),b3 = f (q-1),

(1)求数列{ a n }和{ b n }的通项公式;

解:(1)∵a 1=f (d-1) = (d-2)2,a 3 = f (d+1)= d 2,

∴a3-a1=d2-(d-2)2=2d,

∴d=2,∴an=a1+(n-1)d = 2(n-1);又b1= f (q+1)= q2,b3 =f (q-1)=(q-2)2,

∴ =q2,由q∈R,且q≠1,得q=-2,

∴bn=b?qn-1=4?(-2)n-1

当已知数列为等差或等比数列时,可直接利用等差或等比数列的通项公式,只需求得首项及公差公比。

三、 叠加法

例3:已知数列6,9,14,21,30,…求此数列的一个通项。

解 易知

……

各式相加得 ∴

一般地,对于型如 类的通项公式,只要 能进行求和,则宜采用此方法求解。

四、叠乘法

例4:在数列{ }中, =1, (n+1)? =n? ,求 的表达式。

解:由(n+1)? =n? 得 ,

= … = 所以

一般地,对于型如 = (n)? 类的通项公式,当 的值可以求得时,宜采用此方法。

五、公式法

若已知数列的前 项和 与 的关系,求数列 的通项 可用公式

求解。

例5:已知下列两数列 的前n项和sn的公式,求 的通项公式。

(1) 。 (2)

解: (1)

= = =3

此时, 。∴ =3 为所求数列的通项公式。

(2) ,当 时

由于 不适合于此等式 。 ∴

注意要先分n=1和 两种情况分别进行运算,然后验证能否统一。

例6. 设数列 的首项为a1=1,前n项和Sn满足关系

求证:数列 是等比数列。

解析:因为

所以

所以,数列 是等比数列。

六、阶差法

例7.已知数列 的前 项和 与 的关系是

,其中b是与n无关的常数,且 。

求出用n和b表示的an的关系式。

解析:首先由公式: 得:

利用阶差法要注意:递推公式中某一项的下标与其系数的指数的关系,即

其和为 。

七、待定系数法

例8:设数列 的各项是一个等差数列与一个等比数列对应项的和,若c1=2,c2=4,c3=7,c4=12,求通项公式cn

解:设

点评:用待定系数法解题时,常先假定通项公式或前n项和公式为某一多项式,一般地,若数列 为等差数列:则 , (b、c为常数),若数列 为等比数列,则 , 。

八、 辅助数列法

有些数列本身并不是等差或等比数列,但可以经过适当的变形,构造出一个新的数列为等差或等比数列,从而利用这个数列求其通项公式。

例9.在数列 中, , , ,求 。

解析:在 两边减去 ,得

∴ 是以 为首项,以 为公比的等比数列,

∴ ,由累加法得

=

= … = =

=

例10.(2003年全国高考题)设 为常数,且 ( ),

证明:对任意n≥1,

证明:设,

用 代入可得

∴ 是公比为 ,首项为 的等比数列,

∴ ( ),

即:

型如an+1=pan+f(n) (p为常数且p≠0, p≠1)可用转化为等比数列等.

(1)f(n)= q (q为常数),可转化为an+1+k=p(an+k),得{ an+k }是以a1+k为首项,p为公比的等比数列。

例11:已知数 的递推关系为 ,且 求通项 。

解:∵ ∴

则辅助数列 是公比为2的等比数列

∴ 即 ∴

例12: 已知数列{ }中 且 ( ),,求数列的通项公式。

解:∵

∴ , 设 ,则

故{ }是以 为首项,1为公差的等差数列

∴ ∴

例13.(07全国卷Ⅱ理21)设数列 的首项 .

(1)求 的通项公式;

解:(1)由

整理得 .

又 ,所以 是首项为 ,公比为 的等比数列,得

注:一般地,对递推关系式an+1=pan+q (p、q为常数且,p≠0,p≠1)可等价地改写成

则{ }成等比数列,实际上,这里的 是特征方程x=px+q的根。

(2) f(n)为等比数列,如f(n)= qn (q为常数) ,两边同除以qn,得 ,令bn= ,可转化为bn+1=pbn+q的形式。

例14.已知数列{an}中,a1= , an+1= an+( )n+1,求an的通项公式。

解:an+1= an+( )n+1 乘以2n+1 得 2n+1an+1= (2nan)+1 令bn=2nan 则 bn+1= bn+1

易得 bn= 即 2nan=

∴ an=

(3) f(n)为等差数列

例15.已知已知数列{an}中,a1=1,an+1+an=3+2 n,求an的通项公式。

解:∵ an+1+an=3+2 n,an+2+an+1=3+2(n+1),两式相减得an+2-an=2

因此得,a2n+1=1+2(n-1), a2n=4+2(n-1), ∴ an= 。

注:一般地,这类数列是递推数列的重点与难点内容,要理解掌握。

(4) f(n)为非等差数列,非等比数列

例16.(07天津卷理)在数列 中, ,其中 .

(Ⅰ)求数列 的通项公式;

解:由 , ,

可得 ,

所以 为等差数列,其公差为1,首项为0,故 ,所以数列 的通项公式为 .

这种方法类似于换元法, 主要用于已知递推关系式求通项公式。

九、归纳、猜想

如果给出了数列的前几项或能求出数列的前几项,我们可以根据前几项的规律,归纳猜想出数列的通项公式,然后再用数学归纳法证明之。

例17.(2002年北京春季高考)已知点的序列 ,其中 , , 是线段 的中点, 是线段 的中点,…, 是线段 的中点,…

(1) 写出 与 之间的关系式( )。

(2) 设 ,计算 ,由此推测 的通项公式,并加以证明。

(3) 略

解析:(1)∵ 是线段 的中点, ∴

(2) ,

= ,

= ,

猜想 ,下面用数学归纳法证明

当n=1时, 显然成立;

假设n=k时命题成立,即

则n=k+1时, =

=

∴ 当n=k+1时命题也成立,∴ 命题对任意 都成立。

例18:在数列{ }中, ,则 的表达式为 。

分析:因为 ,所以得: ,

猜想: 。

十、倒数法

数列有形如 的关系,可在等式两边同乘以 先求出

例19.设数列 满足 求

解:原条件变形为 两边同乘以 得 .

综而言之,等差、等比数列是两类最基本的数列,是数列部分的重点,自然也是高考考查的热点,而考查的目的在于测试灵活运用知识的能力,这个“灵活”往往集中在“转化”的水平上;以上介绍的仅是常见可求通项基本方法,同学们应该在学习不断的探索才能灵活的应用.只要大家认真的分析求通项公式并不困难.

(1)证明:

因为S(n+1)=3Sn+2,所以S(n+1)+1=3Sn+3=3(Sn+1).

因为S1+1=2+1=3≠0,所以Sn+1≠0,因此[S(n+1)+1]/(Sn+1)=3.

所以数列{Sn+1}是以3为首项,3为公比的等比数列.

所以Sn+1=(S1+1)*q^(n-1)=3*3^(n-1)=3^n,因此Sn=3^n-1.

(2)解:

当n=1时,a1=S1=2;

当n>1时:

Sn=3^n-1

S(n-1)=3^(n-1)-1.

所以an=Sn-S(n-1)=(3^n-1)-[3^(n-1)-1]=3*3^(n-1)-1*3^(n-1)=2*3^(n-1).

因为a1=2,符合上式,所以通项公式an=2*3^(n-1).

文章标签: # 数列 # 公式 # an