您现在的位置是: 首页 > 教育改革 教育改革
2017高考三卷答案文科,2017年高考文综答案全国卷三
tamoadmin 2024-06-10 人已围观
简介1.2022年高考数学甲卷答案文科-全国甲卷数学文科试卷及答案2.2022全国新高考Ⅱ卷文科数学试题及答案解析3.2023全国高考试卷分几类4.高考试卷试题及答案5.你们觉得2017年全国一卷的文科数学难度如何?6.2022年高考数学全国甲卷及答案解析(含真题)7.2017全国高考 文科综合 政治多少分 每一年的高考试题都具体复习参考的意义,有利于帮助考生了解高考出题方向,下面是我分享的2022全
1.2022年高考数学甲卷答案文科-全国甲卷数学文科试卷及答案
2.2022全国新高考Ⅱ卷文科数学试题及答案解析
3.2023全国高考试卷分几类
4.高考试卷试题及答案
5.你们觉得2017年全国一卷的文科数学难度如何?
6.2022年高考数学全国甲卷及答案解析(含真题)
7.2017全国高考 文科综合 政治多少分
每一年的高考试题都具体复习参考的意义,有利于帮助考生了解高考出题方向,下面是我分享的2022全国新高考Ⅰ卷文科数学试题及答案解析,欢迎大家阅读。
2022全国新高考Ⅰ卷文科数学试题及答案解析
2022全国新高考Ⅰ卷文科数学试题还未出炉,待高考结束后,我会第一时间更新2022全国新高考Ⅰ卷文科数学试题,供大家对照、估分、模拟使用。
高考数学必考知识点
圆的标准方程(_-a)2+(y-b)2=r2注:(a,b)是圆心坐标
圆的一般方程_2+y2+D_+Ey+F=0注:D2+E2-4F>0
抛物线标准方程y2=2p_y2=-2p__2=2py_2=-2py
直棱柱侧面积S=c_h斜棱柱侧面积S=c'_h
正棱锥侧面积S=1/2c_h'正棱台侧面积S=1/2(c+c')h'
圆台侧面积S=1/2(c+c')l=pi(R+r)l球的表面积S=4pi_r2
某些数列前n项和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4 1_2+2_3+3_4+4_5+5_6+6_7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径
余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角
圆的标准方程 (_-a)2+(y-b)2=r2 注:(a,b)是圆心坐标
圆的一般方程 _2+y2+D_+Ey+F=0 注:D2+E2-4F>0
抛物线标准方程 y2=2p_ y2=-2p_ _2=2py _2=-2py
直棱柱侧面积 S=c_h 斜棱柱侧面积 S=c'_h
正棱锥侧面积 S=1/2c_h' 正棱台侧面积 S=1/2(c+c')h'
圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pi_r2
圆柱侧面积 S=c_h=2pi_h 圆锥侧面积 S=1/2_c_l=pi_r_l
弧长公式 l=a_r a是圆心角的弧度数r >0 扇形面积公式 s=1/2_l_r
锥体体积公式 V=1/3_S_H 圆锥体体积公式 V=1/3_pi_r2h
斜棱柱体积 V=S'L 注:其中,S'是直截面面积, L是侧棱长
柱体体积公式 V=s_h 圆柱体 V=pi_r2h
高考数学答题窍门
1、审题要慢,答题要快
有些考生只知道一味求快,往往题意未清,便匆忙动笔,结果误入歧途,即所谓欲速则不达,看错一个字可能会遗憾终生,所以审题一定要慢,有了这个“慢”,才能形成完整的合理的解题策略,才有答题的“快”。
2、运算要准,胆子要大
高考没有足够的时间让你反复验算,更不容你一再地变换解题 方法 ,往往是拿到一个题目,凭感觉选定一种方法就动手做,这时除了你的每一步运算务求正确外,还要求把你当时的解法坚持到底,也许你选择的不是最好的方法,但如回头重来将会花费更多的时间,当然坚持到底并不意味着钻牛角尖,一旦发现自己走进死胡同,还是要立刻迷途知返。
3、先易后难,敢于放弃
能够增强信心,使思维趋向,对发挥水平极为有利;另一方面如果先做难题,可能会浪费好多时间,即使难关被攻克,却已没有时间去得那些易得的分数,所以关键时刻,敢于放弃,也是一种明智的选择。有些解答题第一问就很难,这时可以先放弃第一问,而直接使用第一问的结论解决第2问、第3问。
4、先熟后生,合理用时
面对熟悉的题目,自然象吃了定心丸,做起来得心应手,会使你获得好心情,并且可以在最短时间内完成,留下更多的时间来思考那些不熟悉的题目。有些题目需花很多时间却只得到很少分数,有些题目只要花很少时间却有很高的分值。所以应先把时间用在那些较易题或分值较高题目上,最大限度地提高时间的利用率。
2022全国新高考Ⅰ卷文科数学试题及答案解析相关 文章 :
★ 2022年高考乙卷数学真题试卷
★ 2022年新高考Ⅱ卷语文题目与答案解析
★ 2022年新高考Ⅰ卷语文题目与答案参考
★ 2022全国高考试卷分几类
★ 2022高考历年历史试卷分析(全国1卷)
★ 2022高考数学必考知识点归纳最新
★ 2022高考数学答题技巧
★ 2022年高考数学必考知识点总结最新
★ 2021新高考全国1卷数学真题及答案
★ 2022高考文综理综各题型分数值一览
2022年高考数学甲卷答案文科-全国甲卷数学文科试卷及答案
导读全国高考试卷分为全国甲卷、乙卷、丙卷,新课标的全国卷从开始的一卷和二卷,到现在的一卷二卷三卷,也是经历了很大的改革,小语种高考统一使用全国卷,各省均无自主命题权,且不分甲、乙、丙卷,那么全国高考一卷二卷三卷区别是什么?下面我们就来具体了解一下。
1、全国一卷二卷三卷的区别:
每个省份的经济发展水平、教育资源等方面一定不是平均的,这就不可能让全国考生都做同一张卷,同一道题。能保证至少一个省考的题一样,在这个前提下其他方面公平竞争,在大数据时代,如果教育部门能在考试后把做同一套卷的这些省份的考生成绩统计出来,成绩、数据的参考意义会更大。也为高校招生计划分配、教育部门政策设计方向提供更有益的方案。
高考的相对公平更多是体现在学生是和所在地区的所有考生一起竞争,竞争范围远远大于学校年级排名,基数更大,公平性相对更高。
2、全国卷一使用地区(9个省份):
河南、河北、山西、江西、湖北、湖南、广东、安徽、福建
3、全国卷二使用地区(10个省份):
甘肃、青海、内蒙古、黑龙江、吉林、辽宁、宁夏、新疆、陕西、重庆
4、全国卷三使用地区(5个省份):
云南、广西、贵州、四川、西藏
5、新高考全国卷地区(2个省份):
山东、海南
山东:语数外(新高考Ⅰ卷)
海南:语数外(新高考ⅠⅠ卷)
6、自主命题地区(5个省市):
北京、天津、上海、江苏、浙江
以上就是全国高考一卷二卷三卷区别,希望对各省考生能有所帮助,另外,不同考生对应的考卷类型不一样,希望大家做好区分工作,2021年是新高考年,也希望大家能够重视起来。
2022全国新高考Ⅱ卷文科数学试题及答案解析
本期为大家整理全国甲卷数学文科试卷解析及参考答案相关内容,供大家估分对答案使用。甲卷省份有四川、云南、广西、贵州等地,一起来看看这些地区2022年高考数学甲卷答案文科是什么,以及全国甲卷数学文科试卷及答案2022年具体内容。
1. 2022年使用的地区
2022年使用全国甲卷数学文科试卷的省份地区有:四川省、广西、贵州省、云南省和西藏。
这五个地区的考生2022年高考采用传统高考模式,考生分为文科、理科两类,文科使用数学(文)试卷,理科使用数学(理)试卷。
2. 2022年甲卷数学考试时间2022年6月7日15:00-17:00
3. 更多相关数据我们可以从 本文下方“输入分数看能上的大学”一栏,输入自己的成绩、所在省份、选考科目,一键进入圆梦志愿 。
除了能看到 分数线、一分一段 表等更多高考数据, 还能查看其通过大数据分析及云计算处理后,为我们科学评估出的所有能上的大学 。
以下答案仅为参考答案,我们将在官方公布标准答案之后第一时间给大家整理汇总在此,请保持关注哦!
2023全国高考试卷分几类
在高考结束后,很多考生都会对答案,提前预估自己的分数,这样方便大家提前准备志愿填报。下面是我分享的2022全国新高考Ⅱ卷文科数学试题及答案解析,欢迎大家阅读。
2022全国新高考Ⅱ卷文科数学试题及答案解析
2022全国新高考Ⅱ卷文科数学试题还未出炉,待高考结束后,我会第一时间更新2022全国新高考Ⅱ卷文科数学试题,供大家对照、估分、模拟使用。
2022高考数学大题题型 总结
一、三角函数或数列
数列是高考必考的内容之一。高考对这个知识点的考查非常全面。每年都会有等差数列,等比数列的考题,而且经常以综合题出现,也就是说把数列知识和指数函数、对数函数和不等式等其他知识点综合起来。
近几年来,关于数列方面的考题题主要包含以下几个方面:
(1)数列基本知识考查,主要包括基本的等差数列和等比数列概念以及通项公式和求和公式。
(2)把数列知识和其他知识点相结合,主要包括数列知识和函数、方程、不等式、三角、几何等其他知识相结合。
(3)应用题中的数列问题,一般是以增长率问题出现。
二、立体几何
高考立体几何试题一般共有4道(选择、填空题3道,解答题1道),共计总分27分左右,考查的知识点在20个以内。选择填空题考核立几中的计算型问题,而解答题着重考查立几中的逻辑推理型问题,当然,二者均应以正确的空间想象为前提。随着新的课程改革的进一步实施,立体几何考题正朝着多一点思考,少一点计算的发展。从历年的考题变化看,以简单几何体为载体的线面位置关系的论证,角与距离的探求是常考常新的热门话题。
三、统计与概率
1.掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题。
2.理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题。
3.理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题。
4.掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题。
5.了解随机事件的发生存在着规律性和随机事件概率的意义。
6.了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率。
7.了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率。
8.会计算事件在n次独立重复试验中恰好发生k次的概率.
四、解析几何(圆锥曲线)
高考解析几何剖析:
1、很多高考问题都是以平面上的点、直线、曲线(如圆、椭圆、抛物线、双曲线)这三大类几何元素为基础构成的图形的问题;
2、演绎规则就是代数的演绎规则,或者说就是列方程、解方程的规则。
有了以上两点认识,我们可以毫不犹豫地下这么一个结论,那就是解决高考解析几何问题无外乎做两项工作:
(1)、几何问题代数化。
(2)、用代数规则对代数化后的问题进行处理。
五、函数与导数
导数是微积分的初步知识,是研究函数,解决实际问题的有力工具。在高中阶段对于导数的学习,主要是以下几个方面:
1.导数的常规问题:
(1)刻画函数(比初等 方法 精确细微);
(2)同几何中切线联系(导数方法可用于研究平面曲线的切线);
(3)应用问题(初等方法往往技巧性要求较高,而导数方法显得简便)等关于次多项式的导数问题属于较难类型。
2.关于函数特征,最值问题较多,所以有必要专项讨论,导数法求最值要比初等方法快捷简便。
3.导数与解析几何或函数图象的混合问题是一种重要类型,也是高考中考察综合能力的一个方向,应引起注意。
2022高考解答题评分标准
解答题阅卷的评分原则一般是:第一问,错或未做,而第二问对,则第二问得分全给;前面错引起后面方法用对但结果出错,则后面给一半分。
解题策略:
(1)常见失分因素:
1.对题意缺乏正确的理解,应做到慢审题快做题;
2.公式记忆不牢,考前一定要熟悉公式、定理、性质等;
3.思维不严谨,不要忽视易错点;
4.解题步骤不规范,一定要按课本要求,否则会因不规范答题失分,避免“对而不全”如解概率题,要给出适当的文字说明,不能只列几个式子或单纯的结论,表达不规范、字迹不工整等非智力因素会影响阅卷老师的“感情分”;
5.计算能力差失分多,会做的一定不能放过,不能一味求快,例如平面解析中的圆锥曲线问题就要求较强的运算能力;
6.轻易放弃试题,难题不会做,可分解成小问题,分步解决,如最起码能将文字语言翻译成符号语言、设应用题未知数、设轨迹的动点坐标等,都能拿分。也许随着这些小步骤的罗列,还能悟出解题的灵感。
2022全国新高考Ⅱ卷文科数学试题及答案解析相关 文章 :
★ 2022高考全国甲卷数学试题及答案
★ 2022年全国乙卷高考语文真题试卷及答案解析(未公布)
★ 2022年浙江高考数学试卷
★ 2022新高考2卷语文试题及答案一览
★ 2022全国高考试卷分几类
★ 2022高考数学必考知识点归纳最新
★ 2022年高考数学必考知识点总结最新
★ 2022高考文综理综各题型分数值一览
★ 2022年新高考Ⅰ卷语文题目与答案参考
★ 2022新高考Ⅱ卷选择创造未来作文12篇
高考试卷试题及答案
2023全国高考试卷分三类。
2023年全国高考试卷分为三类:新教材新高考卷、新教材老高考卷、老教材老高考卷。其中,新高考卷又分为全国I卷、全国II卷、北京卷、天津卷、上海卷、全国甲卷、全国乙卷。自主命题卷包括北京卷、上海卷、天津卷。
拓展知识:
1、新高考一卷适用省份:山东、河北、湖北、福建、湖南、广东、江苏,浙江。考试科目:语文、数学、外语、物理、化学、生物、政治、历史、地理、信息技术等.
特点:语文、数学、外语三门考试由教育部考试中心统一命题;物理、历史、化学、政治、生物、地理由各省自行命题。其中广东、福建、江苏、湖南、湖北、河北6个省是3+1+2模式的高考省份,山东省是综合改革3+3省份。
2、新高考二卷适用省份:海南、辽宁、重庆。考试科目:语文、数学、外语、物理、化学、生物、政治、历史、地理等。
特点:语文、数学、外语三门考试由教育部考试中心统一命题,物理、历史、化学、政治、生物、地理由各省自行命题。其中辽宁、重庆两省市是3+1+2省份,海南是综合改革3+3省份。
3、全国甲卷)适用省份:云南、贵州、四川、西藏、广西。考试科目:语文、数学、外语、文综、理综。
特点:语文、数学、外语、文科综合、理科综合均由教育部考试中心统一命题。
4、全国乙卷适用省份:河南、江西、山西、陕西、安徽、甘肃、宁夏、青海、新疆、黑龙江、吉林、内蒙古。考试科目:语文、数学、外语、文综、理综。
特点:语文、数学、外语、文科综合、理科综合均由教育部考试中心统一命题。
5、自主命题适用省份:北京、上海、天津。考试科目:语文、数学、外语、物理、化学、生物、政治、历史、地理等。
特点:这三个地区的考生分别使用其自主命题的试卷,即:北京卷、上海卷、天津卷。
你们觉得2017年全国一卷的文科数学难度如何?
2011年普通高等学校招生全国统一考试(湖北卷)
数学试题(文史类)
本试题卷共4页,三大题21小题。全卷满分150分,考试用时120分钟。
★祝考试顺利★
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上。并将准考证号条形码粘贴在答题卡上的指定位置。用2B铅笔将答题卡上试卷类型A后的方框涂黑。
2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目选项的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,答在试题卷、草稿纸上无效。
3.填空题和解答题的作答:用0.5毫米黑色黑水签字笔直接在答题卡上对应的答题区域内。答在试题卷、草稿纸上无效。
4.考生必须保持答题卡的整洁。考试结束后,请将本试题卷和答题卡一并交回。
一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知 则
A. B.
C. D.
2.若向量 ,则2a+b与 的夹角等于
A. B. C. D.
3.若定义在R上的偶函数 和奇函数 满足 ,则 =
A. B. C. D.
4.将两个顶点在抛物线 上,另一个顶点是此抛物线焦点的正三角形个数记为 ,则
A. B.
C. D.
5.有一个容量为200的样本,其频率分布直方图如图所示,根据样本的频率分布直方图估计,样本数据落在区间 内的频数为
A.18 B.36
C.54 D.72
6.已知函数 ,若 ,则x的取值范围为
A. B.
C. D.
7.设球的体积为 ,它的内接正方体的体积为 ,下列说法中最合适的是
A. 比 大约多一半 B. 比 大约多两倍半
C. 比 大约多一倍 D. 比 大约多一倍半
8.直线 与不等式组 表示的平面区域的公共点有
A.0个 B.1个 C.2个 D.无数个
9.《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则第5节的容积为
A.1升 B. 升 C. 升 D. 升
10.若实数a,b满足 ,且 ,则称a与b互补,记 那么 是a与b互补的
A.必要而不充分的条件 B.充分而不必要的条件
C.充要条件 D.既不充分也不必要的条件
二、填空题:本大题共5小题,每小题5分,共25分,请将答案填在答题卡对应题号的位置上,一题两空的题,其答案按先后次序填写,答错位置,书写不清,模棱两可均不得分。
11.某市有大型超市200家、中型超市400家、小型超市1400家。为掌握各类超市的营业情况,现按分层抽样方法抽取一个容量为100的样本,应抽取中型超市__________家。
12. 的展开式中含 的项的系数为__________。(结果用数值表示)
13.在30瓶饮料中,有3瓶已过了保质期,从这30瓶饮料中任取2瓶,则至少取到1瓶已过保质期饮料的概率为__________。(结果用最简分数表示)
14.过点(—1,—2)的直线l被圆 截得的弦长为 ,则直线l的斜率为__________。
15.里氏震级M的计算公式为: ,其中A是测震仪记录的地震曲线的最大振幅, 是相应的标准地震的振幅。假设在一次地震中,测震仪记录的最大振幅是1000,此时标准地震的振幅为0.001,则此次地震的震级为 级;9级地震的最大振幅是5级地震最大振幅的 倍。
三、解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤。
16.(本小题满分12分)
设 的内角A、B、C所对的边分别为a、b、c,已知
(I) 求 的周长;
(II)求 的值。
17.(本小题满分12分)
成等差数列的三个正数的和等于15,并且这三个数分别加上2、5、13后成为等比数列 中的 、 、 。
(I) 求数列 的通项公式;
(II) 数列 的前n项和为 ,求证:数列 是等比数列。
18.(本小题满分12分)
如图,已知正三棱柱 - 的底面边长为2,侧棱长为 ,点E在侧棱 上,点F在侧棱 上,且 , .
(I) 求证: ;
(II) 求二面角 的大小。
19.(本小题满分12分)
提高过江大桥的车辆通行能力可改善整个城市的交通状况,在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆 /千米)的函数,当桥上的车流密度达到200辆 /千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆 /千米时,车流速度为60千米/小时,研究表明:当 时,车流速度v是车流密度x的一次函数。
(I)当 时,求函数v(x)的表达式;
(II)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时) 可以达到最大,并求出最大值。(精确到1辆/小时)。
20.(本小题满分13分)
设函数 , ,其中 ,a、b为常数,已知曲线 与 在点(2,0)处有相同的切线l。
(I) 求a、b的值,并写出切线l的方程;
(II)若方程 有三个互不相同的实根0、 、 ,其中 ,且对任意的 , 恒成立,求实数m的取值范围。
21.(本小题满分14分)
平面内与两定点 、 ( )连线的斜率之积等于非零常数m的点的轨迹,加上 、A2 两点所成的曲线C可以是圆、椭圆或双曲线。
(Ⅰ)求曲线C的方程,并讨论C的形状与m值的关系;
(Ⅱ)当 时,对应的曲线为 ;对给定的 ,对应的曲线为 ,设 、 是 的两个焦点。试问:在 上,是否存在点 ,使得△ 的面积 。若存在,求 的值;若不存在,请说明理由。
参考答案
一、选择题:本题主要考查基础知识和基本运算。每小题5分,满分50分。
A卷:1—5ACDCB 6—10ADBBC
B卷:1—5DCABC 6—10ADBBC
二、填空题:本题主要考查基础知识和基本运算,每小题5分,满分25分。
11.20 12.17 13. 14.1或 15.6,10000
三、解答题:本大题共6小题,共75分。解答应写出文字说明,证明过程或演算步骤。
16.本小题主要考查三角函数的基本公式和解斜三角形的基础知识,同时考查基本运算能力。(满分12分)
解:(Ⅰ)
的周长为
(Ⅱ)
,故A为锐角,
17.本小题主要考查等差数列,等比数列及其求和公式等基础知识,同时考查基本运算能力。(满分12分)
解:(Ⅰ)设成等差数列的三个正数分别为
依题意,得
所以 中的 依次为
依题意,有 (舍去)
故 的第3项为5,公比为2。
由
所以 是以 为首项,2为以比的等比数列,其通项公式为
(Ⅱ)数列 的前 项和 ,即
所以
因此 为首项,公比为2的等比数列。
18.本小题主要考查空间直线与平面的位置关系和二面角的求法,同时考查空间想象能力和推理论证能力。(满分12分)
解法1:(Ⅰ)由已知可得
于是有
所以
又
由
(Ⅱ)在 中,由(Ⅰ)可得
于是有EF2+CF2=CE2,所以
又由(Ⅰ)知CF C1E,且 ,所以CF 平面C1EF,
又 平面C1EF,故CF C1F。
于是 即为二面角E—CF—C1的平面角。
由(Ⅰ)知 是等腰直角三角形,所以 ,即所求二面角E—CF—C1的大小为 。
解法2:建立如图所示的空间直角坐标系,则由已知可得
(Ⅰ)
(Ⅱ) ,设平面CEF的一个法向量为
由
即
设侧面BC1的一个法向量为
设二面角E—CF—C1的大小为θ,于是由θ为锐角可得
,所以
即所求二面角E—CF—C1的大小为 。
19.本小题主要考查函数、最值等基础知识,同时考查运用数学知识解决实际问题的能力。(满分12分)
解:(Ⅰ)由题意:当 ;当
再由已知得
故函数 的表达式为
(Ⅱ)依题意并由(Ⅰ)可得
当 为增函数,故当 时,其最大值为60×20=1200;
当 时,
当且仅当 ,即 时,等号成立。
所以,当 在区间[20,200]上取得最大值
综上,当 时, 在区间[0,200]上取得最大值 。
即当车流密度为100辆/千米时,车流量可以达到最大,最大值约为3333辆/小时。
20.本题主要考查函数、导数、不等式等基础知识,同时考查综合运用数学知识进行推理论证的能力,以及函数与方程和特殊与一般的思想,(满分13分)
解:(Ⅰ)
由于曲线 在点(2,0)处有相同的切线,
故有
由此得
所以 ,切线 的方程为
(Ⅱ)由(Ⅰ)得 ,所以
依题意,方程 有三个互不相同的实数 ,
故 是方程 的两相异的实根。
所以
又对任意的 成立,
特别地,取 时, 成立,得
由韦达定理,可得
对任意的
则
所以函数 的最大值为0。
于是当 时,对任意的 恒成立,
综上, 的取值范围是
20.本小题主要考查曲线与方程、圆锥曲线等基础知识,同时考查推理运算的能力,以及分类与整合和数形结合的思想。(满分14分)
解:(I)设动点为M,其坐标为 ,
当 时,由条件可得
即 ,
又 的坐标满足
故依题意,曲线C的方程为
当 曲线C的方程为 是焦点在y轴上的椭圆;
当 时,曲线C的方程为 ,C是圆心在原点的圆;
当 时,曲线C的方程为 ,C是焦点在x轴上的椭圆;
当 时,曲线C的方程为 C是焦点在x轴上的双曲线。
(II)由(I)知,当m=-1时,C1的方程为
当 时,
C2的两个焦点分别为
对于给定的 ,
C1上存在点 使得 的充要条件是
由①得 由②得
当
或 时,
存在点N,使S=|m|a2;
当
或 时,
不存在满足条件的点N,
当 时,
由 ,
可得
令 ,
则由 ,
从而 ,
于是由 ,
可得
综上可得:
当 时,在C1上,存在点N,使得
当 时,在C1上,存在点N,使得
当 时,在C1上,不存在满足条件的点N。
2022年高考数学全国甲卷及答案解析(含真题)
笔者就是2017年参加高考的,作为一名文科生,文科数学相比理科数学来说,简单许多。去年,考试的时候在规定的时间内笔者有幸将卷子都做完,还获得一个比较满意的成绩145。2017年全国一卷数学题难度不是很大,相信题主也快面临高考了,笔者在这里给题主提出几个意见:1把基本的重点的知识点掌握好2每天 抽出一段时间来进行限时训练,锻炼自己的答题速度,答题效率3高三学习压力较大,把自己学到的落于实处,多做题将知识转换成能力4对于文科类,要多背,善于总结与归纳。最后笔者祝愿题主可以在2018年的高考上金榜题名
2017全国高考 文科综合 政治多少分
2022年全国高考将在6月7日开考,相信大家都非常想要知道全国甲卷数学科目的答案及解析,我就为大家带来2022年高考数学全国甲卷及答案解析(含真题)。
2022年全国甲卷高考答案及试卷汇总
点击即可查看
大家可以在本文前后输入高考分数查看能上的大学,了解更多院校详细信息。
一、全国甲卷高考数学真题试卷
文科数学
理科数学
二、全国甲卷高考数学真题答案解析
文科数学
理科数学
Ⅰ.高考文综全国卷政治科目分值为100分。
Ⅱ.考试形式与试卷结构
1.考试形式:笔试、闭卷。
2.考试时间为150分钟,试卷满分为 300分。
3.试卷结构与题型:
试卷包括Ⅰ、Ⅱ两卷。
第Ⅰ卷为政治、历史、地理三个科目的必考题。题型为单项选择题,共计140分。
第Ⅱ卷由政治、历史、地理三个科目的必考题和历史、地理学科的选考题组成,共计160分。试题只涉及单学科的内容,不涉及跨学科综合。
下一篇:青海高考时间,青海高考安排