您现在的位置是: 首页 > 教育改革 教育改革
高考数学二卷文科第三题_高考二卷数学文科答案
tamoadmin 2024-06-16 人已围观
简介1.全国2卷数学难吗2.求文档: 2004全国高考数学立体几何题3.2021年高考数学试题权威评析来了4.2019年广西高考数学试卷试题及答案解析(答案WORD版)5.2022数学高考试卷(江苏2022数学高考试卷)6.2010年安徽文科数学高考卷答案及详解(手机能看的) 对于文科生来说,数学是一门比较特别的学科,高考要想数学分数高,必须掌握必考知识点。下面是我为大家整理的高考文科数学知识点,希望
1.全国2卷数学难吗
2.求文档: 2004全国高考数学立体几何题
3.2021年高考数学试题权威评析来了
4.2019年广西高考数学试卷试题及答案解析(答案WORD版)
5.2022数学高考试卷(江苏2022数学高考试卷)
6.2010年安徽文科数学高考卷答案及详解(手机能看的)
对于文科生来说,数学是一门比较特别的学科,高考要想数学分数高,必须掌握必考知识点。下面是我为大家整理的高考文科数学知识点,希望对大家有所帮助。
高考文科数学知识点
第一,函数与导数
主要考查集合运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。
第二,平面向量与三角函数、三角变换及其应用
这一部分是高考的重点但不是难点,主要出一些基础题或中档题。
第三,数列及其应用
这部分是高考的重点而且是难点,主要出一些综合题。
第四,不等式
主要考查不等式的求解和证明,而且很少单独考查,主要是在解答题中比较大小。是高考的重点和难点。
第五,概率和统计
这部分和我们的生活联系比较大,属应用题。
第六,空间位置关系的定性与定量分析
主要是证明平行或垂直,求角和距离。主要考察对定理的熟悉程度、运用程度。
第七,解析几何
高考的难点,运算量大,一般含参数。
文科数学高频必考考点
第一部分:选择与填空
1.集合的基本运算(含新定集合中的运算,强调集合中元素的互异性);
2.常用逻辑用语(充要条件,全称量词与存在量词的判定);
3.函数的概念与性质(奇偶性、对称性、单调性、周期性、值域最大值最小值);
4.幂、指、对函数式运算及图像和性质
5.函数的零点、函数与方程的迁移变化(通常用反客为主法及数形结合思想);
6.空间体的三视图及其还原图的表面积和体积;
7.空间中点、线、面之间的位置关系、空间角的计算、球与多面体外接或内切相关问题;
8.直线的斜率、倾斜角的确定;直线与圆的位置关系,点线距离公式的应用;
9.算法初步(认知框图及其功能,根据所给信息,几何数列相关知识处理问题);
10.古典概型,几何概型理科:排列与组合、二项式定理、正态分布、统计案例、回归直线方程、独立性检验;文科:总体估计、茎叶图、频率分布直方图;
11.三角恒等变形(切化弦、升降幂、辅助角公式);三角求值、三角函数图像与性质;
12.向量数量积、坐标运算、向量的几何意义的应用;
13.正余弦定理应用及解三角形;
14.等差、等比数列的性质应用、能应用简单的地推公式求其通项、求项数、求和;
15.线性规划的应用;会求目标函数;
16.圆锥曲线的性质应用(特别是会求离心率);
17.导数的几何意义及运算、定积分简单求法
18.复数的概念、四则运算及几何意义;
19.抽象函数的识别与应用;
第二部分:解答题
第17题:向量与三角交汇问题,解三角形,正余弦定理的实际应用;
第18题:(文)概率与统计(概率与统计相结合型)
(理)离散型随机变量的概率分布列及其数字特征;
第19题:立体几何
①证线面平行垂直;面与面平行垂直
②求空间中角(理科特别是二面角的求法)
③求距离(理科:动态性)空间体体积;
第20题:解析几何(注重思维能力与技巧,减少计算量)
①求曲线轨迹方程(用定义或待定系数法)
②直线与圆锥曲线的关系(灵活运用点差法和弦长公式)
③求定点、定值、最值,求参数取值的问题;
第21题:函数与导数的综合应用
这是一道典型应用知识网络的交汇点设计的试题,是考查考生解题能力和文科数学素质为目标的压轴题。
主要考查:分类讨论思想;化归、转化、迁移思想;整体代换、分与合思想
一般设计三问:
①求待定系数,利用求导讨论确定函数的单调性;
②求参变数取值或函数的最值;
③探究性问题或证不等式恒成立问题。
第22题:三选一:
(1)几何证明主要考查三角形相似,圆的切割线定理,证明成比例,求角度,求长度;利用射影定理解决圆中计算和证明问题是历年高考题的 热点 ;
(2)坐标系与参数方程,主要抓两点:参数方程、极坐标方程互化为普通方程;有参数、极坐标方程求解曲线的基本量。这类题,思路清晰,难度不大,抓基础,不做难题。
(3)不等式选讲:绝对值不等式与函数结合型。设计上为:①解含有参变数关于x的不等式;②求解不等式恒成立时参变数的取值;③证明不等式(利用均值定理、放缩法等)。
2018高考文科数学知识点:高中数学知识点 总结
必修一:1、集合与函数的概念(这部分知识抽象,较难理解)2、基本的初等函数(指数函数、对数函数)3、函数的性质及应用(比较抽象,较难理解)
必修二:1、立体几何(1)、证明:垂直(多考查面面垂直)、平行(2)、求解:主要是夹角问题,包括线面角和面面角
这部分知识是高一学生的难点,比如:一个角实际上是一个锐角,但是在图中显示的钝角等等一些问题,需要学生的立体意识较强。这部分知识高考占22---27分
2、直线方程:高考时不单独命题,易和圆锥曲线结合命题
3、圆方程:
必修三:1、算法初步:高考必考内容,5分(选择或填空)2、统计:3、概率:高考必考内容,09年理科占到15分,文科数学占到5分
必修四:1、三角函数:(图像、性质、高中重难点,)必考大题:15---20分,并且经常和其他函数混合起来考查
2、平面向量:高考不单独命题,易和三角函数、圆锥曲线结合命题。09年理科占到5分,文科占到13分
必修五:1、解三角形:(正、余弦定理、三角恒等变换)高考中理科占到22分左右,数学占到13分左右2、数列:高考必考,17---22分3、不等式:(线性规划,听课时易理解,但做题较复杂,应掌握技巧。高考必考5分)不等式不单独命题,一般和函数结合求最值、解集。
高考文科数学知识点总结
乘法与因式分解
a2-b2=(a+b)(a-b)
a3+b3=(a+b)(a2-ab+b2)
a3-b3=(a-b)(a2+ab+b2)
三角不等式
|a+b|≤|a|+|b|
|a-b|≤|a|+|b|
|a|≤b<=>-b≤a≤b
|a-b|≥|a|-|b|-|a|≤a≤|a|
一元二次方程的解
-b+√(b2-4ac)/2a-b-b+√(b2-4ac)/2a
根与系数的关系
X1+X2=-b/aX1__X2=c/a注:韦达定理
判别式
b2-4a=0注:方程有相等的两实根
b2-4ac>0注:方程有一个实根
b2-4ac<0注:方程有共轭复数根
三角函数公式
两角和公式
sin(A+B)=sinAcosB+cosAsinB
sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB
cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB)
tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)
ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
倍角公式
tan2A=2tanA/(1-tan2A)
ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
半角公式
sin(A/2)=√((1-cosA)/2)
sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2)
cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA))
tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA))
ctg(A/2)=-√((1+cosA)/((1-cosA))
和差化积公式
2sinAcosB=sin(A+B)+sin(A-B)
2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B)
-2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2
cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB
tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB
-ctgA+ctgBsin(A+B)/sinAsinB
某些数列前n项和公式
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2
1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1)
12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4
1__2+2__3+3__4+4__5+5__6+6__7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理:a/sinA=b/sinB=c/sinC=2R
注:其中R表示三角形的外接圆半径
余弦定理:b2=a2+c2-2accosB
注:角B是边a和边c的夹角
高考文科数学知识点总结相关 文章 :
★ 2022北京卷高考文科数学试题及答案解析
★ 2022全国新高考Ⅰ卷文科数学试题及答案解析
★ 2022年全国新高考1卷数学试题及答案解析
★ 2022全国新高考Ⅱ卷文科数学试题及答案解析
★ 高中导数知识点总结大全
★ 山东2022高考文科数学试题及答案解析
★ 湖北2022高考文科数学试题及答案解析
★ 2022河北高考文科数学试题及答案解析
★ 高中文科数学复习指导与注意事项
★ 2017高考数学三角函数知识点总结
var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = ""; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();全国2卷数学难吗
这时因为:t>0时,x∈(0,1),导函数在(0,+∞)上有零点;
原函数在(0,1)上的单调性有两种可能性;所以要分两种情况:
(1)t/2>1;
(2)0<t/2<1
只有根据单调性才能把问题表达清楚。
求文档: 2004全国高考数学立体几何题
2023年全国2卷高考数文科挺简单,理科超难。
全国2卷高考数学难度点评
1、结合学科知识,展示数学之美。文、理科Ⅱ卷第(16)题融入了中国悠久的金石文化,赋以几何体真实背景,文、理科Ⅰ卷第(4)题以著名的雕塑“断臂维纳斯”为例,探讨人体黄金分割之美,将美育教育融入数学教育。
2、理论联系实际,引导劳动教育。文科Ⅰ卷第(17)题以商场服务质量管理为背景设计,体现对服务质量的要求,倡导高质量的劳动成果。文、理科Ⅲ卷第(16)题再现了学生到工厂劳动实践的场景,引导学生关注劳动、尊重劳动、参加劳动,体现了劳动教育的要求。
3、2023年的数学试题贯彻落实高考评价体系学科化的具体要求,突出学科素养导向,将理性思维作为重点目标,将基础性和创新性作为重点要求,以数学基础知识为载体,重点考查考生的理性思维和逻辑推理能力。
4、固本强基,夯实发展基础。试卷注重对高中基础内容的全面考查,集合、复数、常用逻辑用语、线性规划、平面向量、算法、二项式定理、排列组合等内容在选择题、填空题中得到了有效的考查。
5、在此基础上,试卷强调对主干内容的重点考查,体现了全面性、基础性和综合性的考查要求。在解答题中重点考查了函数、导数、三角函数、概率统计、数列、立体几何、直线与圆锥曲线等主干内容。
6、2023年的数学试题还注重考查数学应用素养,体现综合性和应用性的考查要求。理科Ⅰ卷第(6)题以我国古代典籍《周易》中描述事物变化的“卦”为背景设置了排列组合试题,体现了中国古代的哲学思想。
2021年高考数学试题权威评析来了
1.[2004年全国高考(山东山西河南河北江西安徽卷)理科数学第10题,文科数学第10题]
已知正四面体ABCD的表面积为S,其四个面的中心分别为E、F、G、H.设四面体EFGH的表面积为T,则等于()
A.B.C.D.
2.[2004年全国高考(山东山西河南河北江西安徽卷)理科数学第16题,文科数学第16题]
已知a、b为不垂直的异面直线,是一个平面,则a、b在上的射影有可能是.
①两条平行直线②两条互相垂直的直线
③同一条直线④一条直线及其外一点
在一面结论中,正确结论的编号是(写出所有正确结论的编号).
3.[2004年全国高考(四川云南吉林黑龙江)文科数学第6题]
正四棱锥的侧棱长与底面边长都是1,则侧棱与底面所成的角为()
A.75°B.60°C.45°D.30°
4.[2004年全国高考(四川云南吉林黑龙江)理科数学第7题,文科数学第10题]
已知球O的半径为1,A、B、C三点都在球面上,且每两点间的球面距离均为,则
球心O到平面ABC的距离为()
A.B.C.D.
5.[2004年全国高考(四川云南吉林黑龙江)理科数学第16题,文科数学第16题]
下面是关于四棱柱的四个命题:
①若有两个侧面垂直于底面,则该四棱柱为直四棱柱
②若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱
③若四个侧面两两全等,则该四棱柱为直四棱柱
④若四棱柱的四条对角线两两相等,则该四棱柱为直四棱柱
其中,真命题的编号是(写出所有正确结论的编号).
6.[2004年全国高考(陕西广西海南西藏内蒙古)理科数学第9题,文科数学第10题]
正三棱锥的底面边长为2,侧面均为直角三角形,则此三棱锥的体积为()
A.B.C.D.
7.[2004年全国高考(陕西广西海南西藏内蒙古)理科数学第13题,文科数学第14题]
用平面截半径为的球,如果球心到平面的距离为,那么截得小圆的面积与球的表面积的比值为.
8.[2004年全国高考(甘肃贵州青海宁夏新疆)文科数学第3题]
正三棱柱侧面的一条对角线长为2,且与底面成45°角,则此三棱柱的体积为()
A.B.C.D.
9.[2004年全国高考(甘肃贵州青海宁夏新疆)理科数学第7题]
对于直线m、n和平面,下面命题中的真命题是()
A.如果、n是异面直线,那么
B.如果、n是异面直线,那么相交
C.如果、n共面,那么
D.如果、n共面,那么
10.[2004年全国高考(甘肃贵州青海宁夏新疆)文科数学第11题]
已知球的表面积为20,球面上有A、B、C三点.如果AB=AC=BC=2,则球心到平
面ABC的距离为()
A.1B.C.D.2
11.[2004年全国高考(甘肃贵州青海宁夏新疆)理科数学第10题]
已知球的表面积为20π,球面上有A、B、C三点.如果AB=AC=2,BC=,则球心
到平面ABC的距离为()
A.1B.C.D.2
12.(2004年北京高考·理工第3题,文史第3题)
设m、n是两条不同的直线,是三个不同的平面,给出下列四个命题:
①若,,则
②若,,,则
③若,,则
④若,,则
其中正确命题的序号是
A. ①和②B. ②和③C. ③和④D. ①和④
13.(2004年北京高考·理工第4题,文史第6题)
如图,在正方体中,P是侧面内一动点,若P到直线BC与直线的距离相等,则动点P的轨迹所在的曲线是
A. 直线B. 圆C. 双曲线D. 抛物线
14.(2004年北京高考·理工第11题,文史第12题)
某地球仪上北纬纬线的长度为,该地球仪的半径是__________cm,
表面积是______________cm2
15.[2004年全国高考(山东山西河南河北江西安徽卷)理科数学第20题,文科数学第21题,满分12分]
如图,已知四棱锥 P—ABCD,PB⊥AD,侧面PAD为边长等于2的正三角形,底面ABCD为菱形,侧面PAD与底面ABCD所成的二面角为120°.
(I)求点P到平面ABCD的距离;
(II)求面APB与面CPB所成二面角的大小.
16.[2004年全国高考(四川云南吉林黑龙江)理科数学第20题,文科数学第20题,满分12分]
如图,直三棱柱ABC—A1B1C1中,∠ACB=90°,AC=1,CB=,侧棱AA1=1,侧面AA1B1B的两条对角线交点为D,B1C1的中点为M.
(Ⅰ)求证CD⊥平面BDM;
(Ⅱ)求面B1BD与面CBD所成二面角的大小.
17.[2004年全国高考(陕西广西海南西藏内蒙古)理科数学第20题,文科数学第21题,满分12分]
三棱锥P-ABC中,侧面PAC与底面ABC垂直,PA=PB=PC=3,
(1)求证:AB ⊥ BC;
(2,理科)设AB=BC=,求AC与平面PBC所成角的大小.
(2,文科) 如果AB=BC=,求侧面PBC与侧面PAC所成二面角的大小.
18.[2004年全国高考(甘肃贵州青海宁夏新疆)理科数学第20题,文科数学第21题,本小题满分12分]
如图,四棱锥P—ABCD中,底面ABCD 为矩形,AB=8,AD=4,侧面PAD为等边三角形,并且与底面所成二面角为60°.
(Ⅰ)求四棱锥P—ABCD的体积;
(Ⅱ)证明PA⊥BD.
19.(2004年北京高考·文史第16题,本小题满分14分)
如图,在正三棱柱中,AB=2,,由顶点B沿棱柱侧面经过棱到顶点的最短路线与的交点记为M,求:
(I)三棱柱的侧面展开图的对角线长
(II)该最短路线的长及的值
(III)平面与平面ABC所成二面角(锐角)的大小
20.(2004年北京高考·理工第16题,本小题满分14分)
如图,在正三棱柱中,AB=3,,M为的中点,P是BC上一点,且由P沿棱柱侧面经过棱到M的最短路线长为,设这条最短路线与的交点为N,求:
(I)该三棱柱的侧面展开图的对角线长
(II)PC和NC的长
(III)平面NMP与平面ABC所成二面角(锐角)的大小(用反三角函数表示)
参考答案
1.A2.①②④3.C4.B5.②④6.C7.8.A9.C
10.A11.A12.A13.D14.
15.[2004年全国高考(山东山西河南河北江西安徽卷)理科数学第20题,文科数学第21题]
本小题主要考查棱锥,二面角和线面关系等基本知识,同时考查空间想象能力和推理、运算能力.满分12分.
(I)解:如图,作PO⊥平面ABCD,垂足为点O.连结OB、OA、OD、OB与AD交于点E,连结PE.
∵AD⊥PB,∴AD⊥OB,
∵PA=PD,∴OA=OD,
于是OB平分AD,点E为AD的中点,所以PE⊥AD.
由此知∠PEB为面PAD与面ABCD所成二面角的平面角,
∴∠PEB=120°,∠PEO=60°
由已知可求得PE=
∴PO=PE·sin60°=,
即点P到平面ABCD的距离为.
(II)解法一:如图建立直角坐标系,其中O为坐标原点,x轴平行于DA.
.连结AG.
又知由此得到:
所以
等于所求二面角的平面角,
于是
所以所求二面角的大小为.
解法二:如图,取PB的中点G,PC的中点F,连结EG、AG、GF,则AG⊥PB,FG//BC,FG=BC.
∵AD⊥PB,∴BC⊥PB,FG⊥PB,
∴∠AGF是所求二面角的平面角.
∵AD⊥面POB,∴AD⊥EG.
又∵PE=BE,∴EG⊥PB,且∠PEG=60°.
在Rt△PEG中,EG=PE·cos60°=.
在Rt△PEG中,EG=AD=1.
于是tan∠GAE==,
又∠AGF=π-∠GAE.
所以所求二面角的大小为π-arctan.
16.[2004年全国高考(四川云南吉林黑龙江)理科数学第20题,文科数学第20题]
本小题主要考查线面关系和直棱柱等基础知识,同时考查空间想象能力和推理运算能力.
满分12分.
解法一:(Ⅰ)如图,连结CA1、AC1、CM,则CA1=
∵CB=CA1=,∴△CBA1为等腰三角形,
又知D为其底边A1B的中点,
∴CD⊥A1B.∵A1C1=1,C1B1=,∴A1B1=
又BB1=1,A1B=2. ∵△A1CB为直角三角形,D为A1B的中点,
∴CD=A1B=1,CD=CC1,又DM=AC1=,DM=C1M.
∴△CDM≌△CC1M,∠CDM=∠CC1M=90°,即CD⊥DM.
因为A1B、DM为平在BDM内两条相交直线,所以CD⊥平面BDM.
(Ⅱ)设F、G分别为BC、BD的中点,连结B1G、FG、B1F,则FG//CD,FG=CD.
∴FG=,FG⊥BD.
由侧面矩形BB1A1A的对角线的交点为D知BD=B1D=A1B=1,
所以△BB1D是边长为1的正三角形.
于是B1G⊥BD,B1G=∴∠B1GF是所求二面角的平面角,
又 B1F2=B1B2+BF2=1+(=,
∴
即所求二面角的大小为
解法二:如图,以C为原点建立坐标系.
(Ⅰ)B(,0,0),B1(,1,0),A1(0,1,1),
D(,M(,1,0),
则∴CD⊥A1B,CD⊥DM.
因为A1B、DM为平面BDM内两条相交直线,所以CD⊥平面BDM.
(Ⅱ)设BD中点为G,连结B1G,则
G(),、、),
所以所求的二面角等于
17.[2004年全国高考(陕西广西海南西藏内蒙古)理科数学第20题,文科数学第21题]
本小题主要考查两个平面垂直的性质、直线与平面所成角等有关知识,以及逻辑思维能力和空间想象能力.满分12分.
(Ⅰ)证明:如图1,取AC中点D,连结PD、BD.
因为PA=PC,所以PD⊥AC,又已知面PAC⊥面ABC,
所以PD⊥面ABC,D为垂足.
因为PA=PB=PC,所以DA=DB=DC,
可知AC为△ABC的外接圆直径,因此AB⊥BC.
(Ⅱ,理科)解:如图2,作CF⊥PB于F,连结AF、DF.
因为△PBC≌△PBA,所以AF⊥PB,AF=CF.
因此,PB⊥平面AFC,
所以面AFC⊥面PBC,交线是CF,
因此直线AC在平面PBC内的射影为直线CF,
∠ACF为AC与平面PBC所成的角.
在Rt△ABC中,AB=BC=2,所以BD=
在Rt△PDC中,DC=
在Rt△PDB中,
在Rt△FDC中,所以∠ACF=30°.
即AC与平面PBC所成角为30°.
(2,文科)解:因为AB=BC,D为AC中点,所以BD⊥AC.
又面PAC⊥面ABC,
所以BD⊥平面PAC,D为垂足.
作BE⊥PC于E,连结DE,
因为DE为BE在平面PAC内的射影,
所以DE⊥PC,∠BED为所求二面角的平面角.
在Rt△ABC中,AB=BC=,所以BD=.
在Rt△PDC中,PC=3,DC=,PD=,
所以
因此,在Rt△BDE中,,
所以侧面PBC与侧面PAC所成的二面角为60°.
18.[2004年全国高考(甘肃贵州青海宁夏新疆)理科数学第20题,文科数学第21题]
本小题主要考查棱锥的体积、二面角、异面直线所成的角等知识和空间想象能力、分析
问题能力.满分12分
解:(Ⅰ)如图1,取AD的中点E,连结PE,则PE⊥AD.
作PO⊥平面在ABCD,垂足为O,连结OE.
根据三垂线定理的逆定理得OE⊥AD,
所以∠PEO为侧面PAD与底面所成的二面角的平面角,
由已知条件可知∠PEO=60°,PE=6,
所以PO=3,四棱锥P—ABCD的体积
VP—ABCD=
(Ⅱ)解法一:如图1,以O为原点建立空间直角坐标系.通过计算可得
P(0,0,3),A(2,-3,0),B(2,5,0),D(-2,-3,0)
所以
因为所以PA⊥BD.
解法二:如图2,连结AO,延长AO交BD于点F.通过计算可得EO=3,AE=2,
又知AD=4,AB=8,
得
所以Rt△AEO∽Rt△BAD.
得∠EAO=∠ABD.
所以∠EAO+∠ADF=90°
所以AF⊥BD.
因为直线AF为直线PA在平面ABCD 内的身影,所以PA⊥BD.
19.(2004年北京高考·文史第16题,本小题满分14分)
本小题主要考查直线与平面的位置关系、棱柱等基本知识,考查空间想象能力、逻辑思维能力和运算能力。满分14分。
解:(I)正三棱柱的侧面展开图是长为6,宽为2的矩形
其对角线长为
(II)如图,将侧面绕棱旋转使其与侧面在同一平面上,点B运动到点D的位置,连接交于M,则就是由顶点B沿棱柱侧面经过棱到顶点C1的最短路线,其长为
故
(III)连接DB,,则DB就是平面与平面ABC的交线
在中
又
由三垂线定理得
就是平面与平面ABC所成二面角的平面角(锐角)
侧面是正方形
故平面与平面ABC所成的二面角(锐角)为
20.(2004年北京高考·理工第16题)
本小题主要考查直线与平面的位置关系、棱柱等基本知识,考查空间想象能力、逻辑思维能力和运算能力。满分14分。
解:(I)正三棱柱的侧面展开图是一个长为9,宽为4的矩形,其对角线长为
(II)如图1,将侧面绕棱旋转使其与侧成在同一平面上,点P运动到点的位置,连接,则就是由点P沿棱柱侧面经过棱到点M的最短路线
设,则,在中,由勾股定理得
求得
(III)如图2,连结,则就是平面NMP与平面ABC的交线,作于H,又平面ABC,连结CH,由三垂线定理得,
就是平面NMP与平面ABC所成二面角的平面角(锐角)
在中,
在中,
故平面NMP与平面ABC所成二面角(锐角)的大小为
2019年广西高考数学试卷试题及答案解析(答案WORD版)
2021年高考数学试题权威评析来了
2021年高考数学试题权威评析来了,数学科落实高考内容改革总体要求,贯彻德智体美劳全面发展的教育方针,聚焦核心素养,突出关键能力考查,体现了高考数学的科学选拔功能和育人导向作用。
2021年高考数学试题权威评析来了12021年教育部考试中心命制了全国甲、乙卷的文、理科数学试卷,新高考Ⅰ卷、Ⅱ卷的数学试卷(不分文理),共6套数学试卷。
数学科落实高考内容改革总体要求,贯彻德智体美劳全面发展的教育方针,聚焦核心素养,突出关键能力考查,体现了高考数学的科学选拔功能和育人导向作用。试题突出数学本质,重视理性思维,坚持素养导向、能力为重的命题原则;倡导理论联系实际、学以致用,关注我国社会主义建设和科学技术发展的重要成果,设计真实问题情境,体现数学的应用价值。试卷稳步推进改革,科学把握必备知识与关键能力的关系,科学把握数学题型的开放性与数学思维的开放性,稳中求新,全面体现了基础性、综合性、应用性和创新性的考查要求。
一、发挥学科特色,彰显教育功能
高考数学命题始终坚持思想性与科学性的高度统一,发挥数学应用广泛、联系实际的学科特点,命制具有教育意义的试题以增强学生社会责任感,引导学生形成正确的人生观、价值观、世界观。试题运用我国社会主义建设和科技发展的重大成就作为试题情境,深入挖掘我国社会经济建设和科技发展等方面的学科素材,引导学生关注我国社会现实与经济、科技进步与发展,增强民族自豪感与自信心,增强国家认同,增强理想信念与爱国情怀。
1.关注科技发展与进步。新高考Ⅱ卷第4题以我国航天事业的重要成果北斗三号全球卫星导航系统为试题情境设计立体几何问题,考查考生的空间想象能力和阅读理解、数学建模的素养。
2.关注社会与经济发展。乙卷理科第6题以北京冬奥会志愿者的培训为试题背景,考查逻辑推理能力和运算求解能力。新高考Ⅰ卷第18题以“一带一路”知识竞赛为背景,考查了考生对概率统计基本知识的理解与应用。甲卷文、理科第2题以我国在脱贫攻坚工作取得全面胜利和农村振兴为背景,通过图表给出了某地农户家庭收入情况的抽样调查结果,以此设计问题,考查考生分析问题和数据处理的能力。
3.关注优秀传统文化。乙卷理科第9题以魏晋时期我国数学家刘徽的著作《海岛算经》中的测量方法为背景,考查考生综合运用知识解决问题的能力,让考生充分感悟到我国古代数学家的聪明才智。新高考Ⅰ卷第16题以我国传统文化剪纸艺术为背景,让考生体验从特殊到一般的探索数学问题的过程,重点考查考生灵活运用数学知识分析问题的能力。
二、坚持开放创新,考查关键能力
2020年10月,中共中央国务院《深化新时代教育评价改革总体方案》提出:稳步推进中高考改革,构建引导学生德智体美劳全面发展的考试内容体系,改变相对固化的试题形式,增强试题开放性,减少死记硬背和“机械刷题”现象。数学科高考积极贯彻《总体方案》要求,加大开放题的创新力度,利用开放题考查数学学科核心素养和关键能力,发挥数学科高考的选拔功能。
1.“举例问题”灵活开放。如新高考Ⅱ卷第14题的答案是开放的,给不同水平的考生提供了充分发挥自己数学能力的空间,在考查思维的灵活性方面起到了很好的作用。高考乙卷文、理科第16题有多组正确答案,有多种解题方案可供选择,考查了考生的空间想象能力,具有较好的选拔性。
2. “结构不良问题”适度开放。如甲卷理科第18题,试题给出部分已知条件,要求考生根据试题要求构建一个命题,给考生充分的选择空间,充分考查学生对数学本质的理解,引导中学数学在数学概念与数学方法的教学中,重视培养数学核心素养,克服“机械刷题”现象。新高考Ⅱ卷第22题第(2)问体现了“结构不良问题”适度开放命题的科学性与素养导向、能力为重的命题原则,对逻辑推理能力、数学抽象能力、直观想象能力等作了很深入地考查,既有利于选拔,也有利于考生发挥好自己的数学能力水平。
3.“存在问题”有序开放。如新高考Ⅱ卷第18题设计具有开放性,基于课程标准,重点考查考生的逻辑推理能力和运算求解题能力,在体现开放性的同时也体现了思维的准确性与有序性。新高考Ⅰ卷第21题第(2)问有序开放问题探索的内容,要求考生运用解析几何的基本思想方法分析问题和解决问题,考查考生在开放的情境中发现主要矛盾的能力。
三、倡导理论联系实际,学以致用
2021年数学科高考在应用性进行重点探索,取得突破。试题注重理论联系实际,体现数学的应用价值,并让学生感悟到数学的应用之美。理论联系实际的试题,体现现代科技发展和现代社会生产等方面的特点,有机渗透数学建模、数据分析、逻辑推理等数学核心素养与数学思想方法的应用,对选拔与育人具有积极的意义。
1.取材真实情境,解决实践问题
如新高考Ⅱ卷第21题取材于生命科学中真实的问题,体现了概率在生命科学中的应用。试题考查了数学抽象、直观想象、逻辑推理等数学核心素养,重点考查了考生综合应用概率、数列、方程、函数等知识和方法解决实际问题的能力,体现了 “基础性,综合性,应用性,创新性”的考查要求。甲卷理科第8题以测量珠穆朗玛峰高程的方法之一——三角高程测量法为背景设计,情境真实,突出理论联系实际,要求考生能正确应用线线关系、线面关系、点面关系等相关几何知识,构建计算模型,同时考查了考生运用正弦定理等解三角形的知识和方法解决实际问题的能力。
2.关注青少年身心健康
身心健康是素质教育的核心内容,在高考评价体系的核心价值指标体系中,包含有健康情感的指标,要求学生具有健康意识,注重增强体质,健全人格,锻炼意志。数学试题对相关内容也有所体现。如高考甲卷理科第4题(文科第6题),以社会普遍关注的青少年视力问题为背景设计,重点考查了考生的数学理解能力和运算求解能力。
3. 关注现实生产生活
如高考乙卷文、理科第17题,以芯片生产中的刻蚀速率为原型,设计了概率统计的应用问题,考查了考生对于平均数、方差等知识的理解和应用,引导考生树立正确的人生观、价值观。新高考Ⅱ卷第6题,以某物理量的测量为背景,考查了正态分布基本知识的理解与应用,引导学生重视数学实验,重视数学的应用。
2021年数学试题很好地落实了“立德树人,服务选才,引导教学”的`核心功能,坚持高考的核心价值,突出学科特色,重视数学本质,发挥了数学科高考的选拔功能,对深化中学数学教学改革发挥了积极的导向作用。
2021年高考数学试题权威评析来了2高考第一天结束后,哪些事情应该避免讨论?
1、不要讨论高考试卷,不要讨论题目的答案。
在这里,笔者用两个“不要”来做出解答。高考第一天一般考语文和数学,当第一天考试结束之后,学生会陆续离开考场,和自己的同学或者父母见面。这时候,大量的同学依照次序走出校门,然后大部分同学们会聚在一起,讨论高考的试卷以及高考的题目以及答案。
尤其是一些学习成绩中等的考生,他们对于自己的答案不确定,因此会参考学习成绩好的同学,看看自己的答案是否与他们相同,这种情况和现象是高考第一天结束之后的大忌。第一天高考结束之后,同学们不要讨论高考试卷,也不要讨论题目的答案,因为每个人的答案都是不一样的,当得知自己做错之后,心理会非常着急,后悔自己为什么答错了,这样的消极情绪会一直保持到第二天考试,因此考生要注意,第一天高考结束,不要讨论高考试卷,不要讨论题目的答案。
2、不要给自己估分。
很多同学有一个习惯,那是在平时学校考试的时候养成的,那就是每当考试结束之后都会自己估分,看一下自己的估分跟真实分数是否一致或者相差多少。而一个习惯一旦养成就很难改掉了。高考第一天结束之后,也有不少同学会在心底里为自己估分,好大致判断第一天的高考成绩。
如果平时估分的话还可以理解,但是在高考的时候,估分会对自己的心理造成很大的负担,如果考试顺利还好,做题比较顺畅,正确率比较高,这是一个正向的促进作用。一旦考试出现了失误,那个估分的时候就比较低,考生心理会承受一个很大的压力,这是不利于第二天参加高考的。
因此每一位考生都应该明白以上这两点,考试第一天结束后不要讨论高考试卷,不要讨论题目的答案,也不要随意给自己估分,这是对第二天的考试不利的。就算同学们想要讨论,那么等到高考全部结束之后再讨论,这是可以的。毕竟高考都结束了,讨论一下题目也不会影响你的发挥,也不会对你的成绩造成影响。希望大家可以将文章传递给你的好友,让我们祝愿2020年高三考生心想事成,前程似锦!
2022数学高考试卷(江苏2022数学高考试卷)
高考完成了数学科目的考试,考试结束教育部考试中心的数学命题专家就对今年的数学试题进行了分析。
总的说来,在贯彻落实《国务院关于深化考试招生制度改革的实施意见》的开局之年,高考数学重在增强基础性、综合性,着重考查学生独立思考和运用所学知识分析问题、解决问题的能力。数学试卷符合考试大纲和课程标准的各项要求,重视数学基础,注重能力立意,体现课改理念,富有时代特征。试题稳中有新,坚持多角度、多层次地考查考生的逻辑思维、运算求解、空间想象以及数据处理等能力,突出对逻辑推理、创新应用意识与中国优秀传统文化的考查,体现了数学的基础性和工具性作用。
特点一:创新试题设计,深入考查逻辑推理能力
数学所考查的逻辑思维、推理方法和分析能力体现了数学作为基础学科的作用,这些在个人的发展过程和认知结构的建构过程中都是必不可少的。通过加强对逻辑推理能力的考查,可以促使学生学习理性思维的方法,养成实事求是、求真务实的思想意识,使他们在今后的生活和工作中形成科学的人生态度。
试卷充分利用学科特点,创新试题设计,深入考查逻辑推理能力。采取的主要措施有:一是设问方式创新,例如全国二卷第19题要求考生画出交线围成的正方形,不必说明画法和理由,鼓励考生动手试验,进行创新尝试;二是试题的解决方案创新,例如全国一卷理科第16题引导考生将解三角形的原理推广运用到四边形中,要求考生打破常规思路,独立思考,积极探究;三是试题素材创新,例如北京卷文科第14题突出对图形、图表语言运用的考查,需要考生从题设图表中获取并处理相关信息进行逻辑推理。试题不落俗套,考查了考生逻辑思维的系统性。四是试题情境创新,例如浙江卷文科第7题将立体几何与平面几何知识有机结合,考查考生空间想象能力和推理论证能力,对考生逻辑思维的灵活性有较高要求。
特点二:突出实践能力考查,增强创新应用意识
数学源于生活与实践,数学知识是解决实际问题的有力工具,数学也是培养理性思维的重要学科,对创新应用意识的形成和发展具有重要作用。
试题重视现实生活中的热点问题,紧密结合社会实际和现实生活,考查考生运用数学工具和思想方法分析、解决问题的能力,体现了数学在解决实际问题中的重要作用和应用价值,体现了高考改革中加强实践性、应用性的要求。试卷中有很多涉及应用背景的试题,贴近考生实际,让考生深深感受到数学就在他们的身边。例如,全国一卷第19题,要求考生根据试题所给的散点图,自主选择回归方程类型,对企业投入产品的宣传费用进行预测。江苏卷第17题以山区修公路为背景,要求考生建立数学模型,适度创新,运用所学数学知识分析问题,完成山区公路设计。试题的设计使考生置身于问题情境之中,充分体现数学的应用价值,激发学生学习数学的兴趣,自觉形成创新应用意识,彰显数学的理性精神与人文情怀,进而影响学生的情感态度价值观。
实践应用能力的培养是素质教育的根本要求,更是破除题海战术、死记硬背的有效措施,也有利于培养学生理论联系实际的思想方法和创新意识,形成良好的思维习惯。试题还突出了对实践能力的考查,要求考生动手实验,积极探索,运用所学数学知识技能和方法解决问题。例如四川卷第18题鼓励考生动手实验,在数学理性的指导下获得正确的实验结果。试题的设计有利于引导学生主动动手实验,积极思考问题。
特点三:注重基础性考查,渗透数学传统文化
数学各份试卷重视对数学基础的考查,试卷中考查基本概念、基本运算、基本思想方法的题目占到60%以上。同时试卷注重对高中所学内容的全面考查,在此基础上,试卷还强调对重点内容的重点考查,如在解答题中考查了函数、导数、三角函数、统计与概率、数列、立体几何、直线与圆锥曲线等中学数学重点内容。
今年数学试卷的另一个亮点就是在基础试题中渗透中国数学文化。我国数学文化历史悠久,有许多不同于西方数学文化的鲜明特点:注重归纳、强调实用、讲究算法。中国古代数学名著《九章算术》、《数书九章》等在人类社会的发展中起着重要作用。试卷选取了体现中国古代优秀数学文化并与中学数学内容结合紧密的素材,编拟试题,要求考生运用所学的基础知识、基本思想方法去解决问题。例如全国二卷第8题的设计思路来源于《九章算术》中的“更相减损术”,湖北卷第2题选自《数书九章》中的“米谷粒分”问题。这些试题的设计让考生感受到我国古代数学的优秀传统——数学要关注生产、生活等社会问题,从而引导考生通过了解数学文化,体会数学知识方法在认识现实世界中的重要作用。在高考试题中渗透中国古代数学文化,强调中国古代数学文化的传统特色,使考生在考查过程中,潜移默化地接受我国古代数学文化的熏陶,自觉形成严谨、务实的治学态度,传承中华优秀传统文化,弘扬爱国主义精神。
数学试卷体现了课程标准理念,能够准确区分考生,有利于科学选拔人才,有利于学生全面发展,有利于促进社会公平。试题科学规范、设计新颖,情境设置合理,引导中学数学教学重视知识的生成、发展、迁移、归纳、拓展以及文化的传承。
;2010年安徽文科数学高考卷答案及详解(手机能看的)
今天小编辑给各位分享2022数学高考试卷的知识,其中也会对江苏2022数学高考试卷分析解答,如果能解决你想了解的问题,关注本站哦。
你如何评价2022新高考数学试卷,今年题目难度如何,有哪些变化?
今年的高考数学居然可以说是地狱级别的难度,而且这次的试卷让很多人都非常的崩溃,也让很多人觉得这种题目根本就让人看不下去,让人非常的愤怒。题型发生了变化,出题的模式也发生了变化,对于一些题目的题型发生了改变,而且还引用了一些实时的新闻,能够通过一些新闻来增加答题的具体性,也能够吸引人们的关注。
2022全国新高考1卷数学难吗?压轴题有何立意?
对于这个高考的试卷题是非常的难的,因为这次的高考的试卷的题目基本上都是来自于那些非常偏非常难的题,那么正是为了测试这些学生的水平而设立的题目,因为正式的考试是为了选拔这些学生的一次考试,那么这仍然是选择了那些非常偏的题,那么一般来说这些学生在上课的时候都是不会去做那种非常偏非常难的题,那么出现了这种非常难非常偏的题的话,那么这些学生就会遇到了困难,至于压轴题的话,压轴题就是更难的,一般压轴题都需要考验一个学生的逻辑思维能力,去做这个题,那么才能够把这个题目给做出来的
选拔性考试
一般来说这个高考的数学试题呢,那么都是以选拔这些学生的一种难度来出的那么自然人是非常的难的,特别考验这些学生的逻辑思维能力,以运用这个知识的这个能力,并不像填空题一样,只要把这个答案填进去就OK了那么一般来说这数学试题呢,都是很考验这些学生的数学逻辑思维,而运用这个知识的能力的,而且是需要灵活的运用这个知识去写这些题目的,所以说就在这个高考的数学试题是非常的难的
压轴题的意义
一般来说呢,压轴题更是最难的一道题,毕竟是压轴的嘛,所以说难度是升了一个阶段的,那么也是很正常,毕竟一张试卷的压轴题,无论是什么试卷的压轴题那么都是非常的难审正常的事情,因为到了压轴题之后那么一般都是考验学生的灵活运用知识的逻辑思维能力,基本上都要运用上去,那么才能够把这道题给做出来,而且所需要的知识量也是非常的大的
总的来说那么高考数学试卷的题目都是非常的难,是考验这些学生灵活的运用知识的一个题目,那么需要这些学生非常的努力的去运用自己所学的知识,不仅仅所需要的知识,还需要自己灵活运用知识的能力,那么才能够将这些题目做出来
2022年天津高考数学试卷及答案
为了帮助大家全面了解2022年天津高考数学卷,大家就能知道2022年天津高考数学难不难?有哪些题型?考了哪些知识点?以及数学试卷的解题思路和方法有哪些?下面是我给大家带来的2022年天津高考数学试卷及答案,以供大家参考!
2022年天津高考数学试卷
截止目前,2022年天津高考数学试卷还未出炉,待高考结束后,力力会第一时间更新2022年天津高考数学试卷,供大家对照、估分、模拟使用。
2022年天津高考数学答案解析
截止目前,2022年天津高考数学答案解析还未出炉,待高考结束后,力力会第一时间更新2022年天津高考数学答案解析,供大家对照、估分、模拟使用。
高考录取规则及志愿设置
志愿设置
提前艺术、体育本科设置1个第一院校志愿和1个第二院校志愿,每所院校设置6个专业志愿和“是否同意专业调剂”志愿;
提前一批本科和提前二批本科批次分别设置1个第一院校志愿、1个第二院校志愿和1个第三院校志愿,每所院校设置6个专业志愿和“是否同意专业调剂”志愿。
本科面向贫困地区专项计划第一、二批次分别设置8个平行院校志愿,排列顺序为A、B、C、D、E、F、G、H,每所院校设置6个专业志愿和“是否同意专业调剂”志愿;
免费医学定向生、农科生院校设置1个院校志愿和6个专业志愿以及“是否同意专业调剂”志愿。
第一批本科批次分别设置8个平行院校志愿,排列顺序为A、B、C、D、E、F、G、H,每所院校设置6个专业志愿和“是否同意专业调剂”志愿;
第一批本科特殊类型招生分公示类和非公示类各设置1个院校志愿和6个专业志愿以及“是否同意专业调剂”志愿。
第一批本科艺术本科院校分别设置1个第一院校志愿、1个第二院校志愿,每所院校设置6个专业志愿和“是否同意专业调剂”志愿。
第二批本科类批次设置8个平行院校志愿,排列顺序为A、B、C、D、E、F、G、H,每所院校设置6个专业志愿和“是否同意专业调剂”志愿。
第二批本科艺术、体育类院校分别设置1个第一院校志愿、1个第二院校志愿,每所院校志愿设置6个专业志愿和“是否同意专业调剂”志愿。
第二批本科C类艺术、体育类院校分别设置8个平行院校志愿,排列顺序为A、B、C、D、E、F、G、H,每所院校设置6个专业志愿和“是否同意专业调剂”志愿。
第二批本科特殊类型招生各设置1个院校志愿和6个专业志愿以及“是否同意专业调剂”志愿。
高本贯通批次设置8个平行院校志愿,排列顺序为A、B、C、D、E、F、G、H,每所院校设置6个专业志愿和“是否同意专业调剂”志愿。
高本贯通艺术类院校分别设置1个第一院校志愿、1个第二院校志愿,每所院校志愿设置6个专业志愿和“是否同意专业调剂”志愿。
提前专科批次设置1个第一院校志愿、1个第二院校志愿和1个第三院校志愿,每所院校设置6个专业志愿和“是否同意专业调剂”志愿。
专科批次设置9个平行院校志愿,排列顺序为A、B、C、D、E、F、G、H、I,每所院校设置6个专业志愿和“是否同意专业调剂”志愿。
专科批次艺术、体育类院校分别设置1个第一院校志愿、1个第二院校志愿,每所院校志愿设置6个专业志愿和“是否同意专业调剂”志愿。
录取原则
高校招生实行两种投档模式。
平行志愿投档模式:根据“考生之间,分数优先;考生志愿,遵循顺序”的投档原则,先分科类将考生按成绩从高分到低分排序,再按照顺序对考生逐个进行投档;对某考生投档时,遵循该考生填报的多个平行志愿院校依次检索判断,当检索到该考生填报的某个院校有调档缺额时,即将该考生档案投放到该院校。
实行平行志愿的批次和科类:本科面向贫困地区专项计划批、第一批本科、第二批本科、高本贯通批、专科批的文史和理工两个科类。
平行志愿投档模式的考生成绩排序规则是:
1)先按考生特征总分从高到低排序;
2)考生总分相同时,再按单科成绩依次从高到低排序。
单科成绩排序的科目顺序是:
文史类:①语文;②数学;③文科综合
理工类:①数学;②语文;③理科综合
3)上年被录取后未报到考生将排在同分数的最后,考生总分相同时,按单科成绩依次从高到低排序。
非平行志愿投档模式:根据“志愿优先”的投档原则,先投第一志愿,当院校第一志愿生源不足时,再依次投第二志愿、第三志愿。
2022年天津高考数学试卷及答案相关文章:
★2022年高考数学答题技巧
★2022全国各省市高考使用全国几卷
★2022全国高考试卷分几类
★2022年北京高考数学试卷
★2022高考数学卷分数分布一览
★2022年高考数学必考知识点总结最新
★高三数学教学2021工作总结模板
★2022年高考时间及考试科目安排表公布
★2022年天津高考一分一段预览表
★2022天津高考一分一段重磅揭晓
2022新高考全国卷的数学题是什么难度?有多少基础分?
随着高考的结束,很多考生都在抱怨本次高考中的数学考试难度非常之大,而很多考生说这次考试想拿数学满分是不可能的事情。而根据权威部门所发布的消息,2022年新高考全国卷的数学题处于中上等难度,相比往年的高考难度增加了一些,而这样做的目的就是加大考生与考生之间的竞争。而高考中的数学题的基础分大概在30~50分之间,因为这个基础分是最基本的一些题型,只要考生在上课期间认真听课,认真复习这些分都能拿满。
一、2022年新高考全国卷的数学题处于中上等难度
根据相关媒体报道,本次出题是由全国的高考专家库出题的,而这次高考数学题的难度为中上等,要比往年的高考难度增加了许多。而本年度的高考很多考生都在反映数学题非常难,都是一些在课程上没有见过的题型,而这又从侧面反映了学校在教课期间并没有对数学题的一些知识内容进行扩展,而只是把重点放在了书本上,所以从这一点上考生们没有接触到新型题型,自然会感觉很难。二、基础分大概在30~50分
一般来讲,全国数学题考试卷总分在150分,而基础分都会设置在30分到50分左右,而根据专家透露的消息,2022年的高考基础分在30分到50分左右,这些题型在课本上都是能见得到的,只要考生在上课期间认真听讲,认真做笔记那么是完全可以拿到这些分数的,因为这是最基础的一种题型。三、总结
总的来说,本年度的高考确实很难,甚至把深圳中学的一个学霸都给考哭了,而很多数学教师在做数学高考试卷的时候都感觉很难,通常要花费两个小时以上才能把所有题型做完,并且还拿不到满分。而还有考生反映往年的高考都有人保证数学成绩能拿满分,而今年的考生则反映没有人敢保证敢拿数学成绩的满分,这就直接表明本年度高考数学这个难度是很难的。
2022年浙江高考数学试卷
为了帮助大家全面了解2022年浙江高考数学卷,这样,大家就能知道2022年浙江高考数学难不难?有哪些题型?考了哪些知识点?以及数学试卷的解题思路和方法有哪些?下面是我给大家带来的2022年浙江高考数学试卷及答案,以供大家参考!
2022年浙江高考数学试卷
截止目前,2022年浙江高考数学试卷还未出炉,待高考结束后,力力会第一时间更新2022年浙江高考数学试卷,供大家对照、估分、模拟使用。
2022年浙江高考数学答案解析
截止目前,2022年浙江高考数学答案解析还未出炉,待高考结束后,力力会第一时间更新2022年浙江高考数学答案解析,供大家对照、估分、模拟使用。
高考填报志愿的技巧
各批次志愿填报注意落差
“平行志愿”不是“平等志愿”,也不是“平行录取”。考生填报的平行志愿有自然顺序,并不是只要成绩达到所填报的4个平行志愿院校录取条件,就可能会被4所院校同时录取。实际上,只要考生档案投到一所志愿高校后,就不会到其他高校,对每个考生而言投档录取机会只有一次。
注重学校录取平均分
考生在填报志愿时,首先要了解自己在学校、区所处的位次,这个是最关键的参考因素。可根据自己一模、二模的成绩,看看自己在区、学校的排名,并排一排自己在全市的位次所在。咨询老师往年该名次段考生的去向,掌握自己可能被录取的学校范围,然后再根据个人的兴趣爱好以及家庭背景等因素,在这个范围内做选择。
避免被调剂慎写“不服从调剂”
选学校退一步,选专业进一步高考填报志愿中,究竟是选学校,还是选专业,是考生和家长最难把握的问题。尤其是对各批次的中分段、低分段考生来说,这一难题最为显现。选好的学校,有可能要舍弃好专业:想填个自己喜欢的专业,学校上就得有所顾忌,因为好学校的好专业肯定是要“挤破头”的。
高考先填志愿还是先出分数
现在都是先高考完知道分数之后再填志愿。高考考生填志愿时所报考的学校层次要根据考生所在省份的分数线决定,所以现在一般都是先出成绩再填相关志愿。
在查到高考分数之后,就可以提前预估自己分数可以报的学校和专业,现在是填报的平行志愿,考生可以一次性填报多所高校,多个专业,按照惯例,填报志愿一般是在出分后,在这之前,考生们要确定好自己的意向学校和专业,认真考虑,不要盲目或者瞎填报。
填报高考志愿时,一定要看清本省志愿及录取方式,是平行志愿还是顺序志愿。现在大部分地区都采取平行志愿模式录取,但是也有部分地区或者部分录取批次专仍然采取顺序志愿录取,二者录取原理是不同的,所以在报考时填写的院校专业顺序也要区别对待。
2022年浙江高考数学试卷相关文章:
★2022年高考数学必考知识点总结最新
★2022高考数学选择题答题方法
★高考数学选择题解题方法2022
★2022高考数学必考知识点考点总结大全
★2022年高考数学考前冲刺指导
★2022年河北高考时间表及注意事项
★2022年数学高考知识点
★2022高考数学必考知识点归纳最新
★2022年北京高考数学试卷
★2022年高考数学前十天如何复习最有效
2022新高考全国一卷数学试卷及答案解析
为了帮助大家全面了解2022年新高考全国一卷数学卷,以下是我整理的2022新高考全国一卷数学试卷及答案解析参考,欢迎大家借鉴与参考!
2022新高考全国一卷数学试卷
2022新高考全国一卷数学试卷答案解析参考
高考怎样填志愿
1、选择哪个学校
填报的几个志愿中要注意梯度,尤其是分数正好卡线的同学。不要一味追求名校,将所有志愿都选择同一层次的学校,更忌全部志愿扎堆名校。
2、选择什么专业
选择专业最主要的是结合自己的兴趣和基础,或者毕业后想从事的工作有特殊要求的专业,比如想当医生,就要选择相对应的专业。
3、提前了解各个学校的情况
在填报志愿之前,提前将各个学校的简章和招生计划等一系列的情况了解清楚,看自己的情况是否与该校复合,这样才能更好的去填写志愿。
服从调剂意味着什么
1、增加了一次录取机会
在平行志愿投档录取模式下,实行“排位优先,一轮投档”,每个考生只有一次被投档的机会。
如果考生所填报的专业志愿都未能被录取,选择服从专业调剂则可能被调至院校专业组内还没有录取满额的专业。而如果考生不服从专业调剂,那么一旦被退档,只能等待补录,或参加高职自招。
2、服从调剂,不一定会被调剂到其他专业
从录取的稳妥性上来说,服从专业调剂对于考生是利大于弊的。并不是说选择了专业调剂,就不会被所填报的专业录取,直接被调剂到其他专业。
如果考生的分数足够进入所填报专业时,就会被录取到所填报专业,服从专业调剂就没有派上用场。只有当考生所报专业全都录取额满,才会进入调剂程序。
3、专业调剂会调到哪里去?
专业服从调剂,是指在所填报的院校专业组内进行调剂。一般情况下,专业服从的范围是,考生当年填报的招生院校专业组,在本次招生计划录取中未满额的专业。
高考之后可以去哪玩
1、云南
云南是一个温和的城市,也是许多人向往的地方。可以在丽江感受古城魅力、在大理感受风花雪月、在香格里拉体验传说中的女儿国,一个四季如春的地方很适合放松心情。
云南香格里拉,感受真正的大自然。香格里拉的自然景色是雪山、冰川、峡谷、森林、草甸、湖泊、美丽、明朗、安然、闲逸、悠远、知足、宁静、和谐,是人们美好理想的归宿。在7月到8月间,避开如涌的人群,把自己放逐在自然,听风的呼唤,听鸟的鸣叫,听流水的声音,聆听自己的心声,这是真正的香格里拉。
2、杭州
“上有天堂,下有苏杭”,杭州是我国宜居城市之一,到西湖边上走一走,品尝东坡肉、干炸响铃、西湖醋鱼
3、重庆
说到重庆就会想到“山城”,说起来重庆也是一个神奇的城市,你以为你在以为你在地面,其实你在地下。到重庆看穿越房屋的轻轨、看斑斓的城市,还能吃上麻辣辣的火锅。
4、厦门
厦门是一个小资城市,尤其是鼓浪屿,充满文艺气息,也适合情侣度假。而且因为靠海,厦门还有非常多便宜又好吃的海鲜
5、西藏
西藏是一个神圣又神秘的地方,如果有机会,人生中一定要去一次。到布达拉宫、纳木错体验纯净的心灵,到珠穆朗玛峰挑战高峰,即使是高原反应也是值得留念的体验。
6、九寨沟
九寨沟以绝天下的原始、神秘而闻名。自然景色兼有湖泊、瀑布、雪山、森林之美,有“童话世界”的美誉。这时雪峰玉立,青山流水,交相辉映。这时的瀑布、溪流更是迷人,如飞珠撒玉,异常雄伟秀丽。其中有千年古木,奇花异草,四时变化,色彩纷呈,倒影斑斓,气象万千,是夏季消暑的理想之地。
7、桂林
“桂林山水甲天下”夸的就是桂林的漓江山水。漓江两岸风景如画,当你泛着竹排漫游漓江时,肯定会感觉自己置身于360的泼墨山水中,好山好水目不暇接。另外,桂林的阳朔可是一个魅力十足的旅游热点。在阳朔上至七八十的老人,下至七八岁的小孩都或多或少能说上几句流利的英语,要不是周围的建筑风格提醒你这是中国境内,没准你还以为自己魂游到哪个“鬼”地方了呢。西街的氛围有点像北京的三里屯,那里的酒吧融合了中西两种文化的精华,在西街呆着就算不喝酒只喝茶,也能体会什么叫享受。
2022新高考全国一卷数学试卷及答案解析相关文章:
★2022高考北京卷数学真题及答案解析
★2022高考全国乙卷试题及答案
★2022全国甲卷高考数学文科试卷及答案解析
★2022高考甲卷数学真题试卷及答案
★2022年北京高考数学试卷
★2022高考全国甲卷数学试题及答案
★2022全国新高考I卷语文试题及答案
★2022全国新高考Ⅰ卷英语试题及答案解析
★2022年全国新高考II卷数学真题及答案
★2022北京卷高考文科数学试题及答案解析
第Ⅰ卷(选择题 共50分)
一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中.只有一项是符合题目要求的.
(1)若A= ,B= ,则 =
(A)(-1,+∞) (B)(-∞,3) (C)(-1,3) (D)(1,3)
答案:C 解析:画数轴易知.
(2)已知 ,则i( )=
(A) (B) (C) (D)
答案:B 解析:直接计算.
(3)设向量 , ,则下列结论中正确的是
(A) (B)
(C) (D) 与 垂直
答案:D 解析:利用公式计算,采用排除法.
(4)过 点(1,0)且与直线x-2y-2=0平行的直线方程是
(A)x-2y-1=0 (B)x-2y+1=0 (C)2x+y-2=0 (D)x+2y-1=0
答案:A 解析:利用点斜式方程.
(5)设数列{ }的前n项和 = ,则 的值为
(A) 15 (B) 16 (C) 49 (D)64
答案:A 解析:利用 =S8-S7,即前8项和减去前7项和.
(6)设abc>0,二次函数f(x)=ax2+bx+c的图像可能是
答案:D 解析:利用开口方向a、对称轴的位置、y轴上的截距点c之间关系,结合abc>0产生矛盾,采用排除法易知.
(7)设a= ,b= ,c= ,则a,b,c的大小关系是
(A)a>c>b (B)a>b>c (C)c>a>b (D)b>c>a
答案:A 解析:利用构造幂函数比较a、c再利用构造指数函数比较b、c.
(8)设x,y满足约束条件 则目标 函数z=x+y的最大值是
(A)3 (B) 4 (C) 6 (D)8
答案:C 解析:画出可行域易求.
(9)一个几何体的三视图如图,该几何体的表面积是
(A)372 (C)292
(B)360 (D)280
答案:B 解析:可理解为长8、宽10、高2的长方体和长6、宽2、高8的长方体组合而成,注意2×6重合两次,应减去.
(10)甲从正方形四个顶点中任意选择两个顶点连成直线,乙也从该正方形四个顶点中任意选择两个顶点连成直线,则所得的两条直线相互垂直的概率是
(A) (B) (C) (D)
答案:C 解析:所有可能有6×6,所得的两条直线相互垂直有5×2.
数 学(文科)(安徽卷)
第Ⅱ卷(非选择题共100分)
二.填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡的相应位置?
(11)命题“存在x∈R,使得x2+2x+5=0”的否定是
答案:对任何X∈R,都有X2+2X+5≠0
解析:依据“存在”的否定为“任何、任意”,易知.
(12)抛物线y2=8x的焦点坐标是
答案:(2,0) 解析:利用定义易知.
(13)如图所示,程序框图(算法流程图)的输出值x=
答案:12 解析:运算时X顺序取值为: 1,2,4,5,6,8,9,10,12.
(14)某地有居民100000户,其中普通家庭99 000户,高收入家庭1 000户.从普通家庭中以简单随机抽样方式抽取990户,从高收入家庭中以简单随机抽样方式抽取l00户进行调查,发现共有120户家庭拥有3套或3套以上住房,其中普通家庭50户,高收人家庭70户.依据这些数据并结合所掌握的统计知识,你认为该地拥有3套或3套以上住房的家庭所占比例的合理估计是 .
答案:5.7% 解析: , ,易知 .
(15)若a>0 ,b>0,a+b=2,则下列不等式对一切满足条件的a,b恒成立的是 . (写出所有正确命题的编号).
①ab≤1; ② + ≤ ; ③a2+b2≥2; ④a3+b3≥3;
答案:①,③,⑤ 解析:①,⑤化简后相同,令a=b=1排除②、易知④ ,再利用 易知③正确
三、解答题:本大题共6小题.共75分.解答应写出文字说明、证明过程或演算步骤.解答写在答题卡上的指定区域内.
(16)△ABC的面积是30,内角A,B,C,所对边长分别为a,b,c,cosA= .
(1)求
(2)若c-b= 1,求a的值.
(本小题满分12分)本题考查同角三角形函数基本关系,三角形面积公式,向量的数量积,利用余弦定理解三角形以及运算求解能力.
解:由cosA=1213 ,得sinA= =513 .
又12 bc sinA=30,∴bc=156.
(1) =bc cosA=156?1213 =144.
(2)a2=b2+c2-2bc cosA=(c-b)2+2bc(1-cosA)=1+2?156?(1-1213 )=25,
∴a=5
(17)椭圆E经过点A(2,3),对称轴为坐标轴,焦点F1,F2在x轴上,离心率 .
(1)求椭圆E的方程;
(2)求∠F1AF2的角平分线所在直线的方程.
(本小题满分12分)本题考查椭圆的定义,椭圆的标准方程及简单几何性质,直线的点斜式方程与一般方程,点到直线的距离公式等基础知识,考查解析几何的基本思想和综合运算能力.
解:(1)设椭圆E的方程为 由e=12 ,得ca =12 ,b2=a2-c2 =3c2. ∴ 将A(2,3)代入,有 ,解得:c=2, 椭圆E的方程为
(Ⅱ)由(Ⅰ)知F1(-2,0),F2(2,0),所以直线AF1的方程为 y=34 (X+2),
即3x-4y+6=0. 直线AF2的方程为x=2. 由椭圆E的图形知,
∠F1AF2的角平分线所在直线的斜率为正数.
设P(x,y)为∠F1AF2的角平分线所在直线上任一点,
则有
若3x-4y+6=5x-10,得x+2y-8=0,其斜率为负,不合题意,舍去.
于是3x-4y+6=-5x+10,即2x-y-1=0.
所以∠F1AF2的角平分线所在直线的方程为2x-y-1=0.
18、(本小题满分13分)
某市2010年4月1日—4月30日对空气 污染指数的检测数据如下(主要污染物为可吸入颗粒物):
61,76,70,56,81,91,92,91,75 ,81,88,67,101,103,95,91,
77,86,81,83,82,82,64,79,86,85,75,71,49,45,
(Ⅰ) 完成频率分布表;
(Ⅱ)作出频率分布直方图;
(Ⅲ)根据国家标准,污 染指数在0~50之间时 ,空气质量为优:在51~100之间时,为良;在101~150之间时,为轻微污染;在151~200之间时,为轻度污染。
请你依据所给数据和上述标准,对 该市的空气质量给出一个简短评价.
(本小题满分13分)本题考查频数,频数及频率分布直方图,考查运用统计知识解决简单实际问题的能力,数据处理能力和应用意识.
解:(Ⅰ) 频率分布表:
分 组 频 数 频 率
[41,51) 2 230
[51,61) 1 130
[61,71) 4 430
[71,81) 6 630
[81,91) 10 1030
[91,101) 5 530
[101,111) 2 230
(Ⅱ)频率分布直方图:
(Ⅲ)答对下述两条中的一条即可:
(i)该市一个月中空气污染指数有2天处于优的水平,占当月天数的115 . 有26天处于良好的水平,占当月天数的1315 . 处于优或良的天数共有28天,占当月天数的1415 . 说明该市空气质量基本良好.
(ii)轻微污染有2天,占当月天数的115 . 污染指数在80以上的接近轻微污染的天数有15天,加上处于轻微污染的天数,共有17天,占当月天数的1730 ,超过50%. 说明该市空气质量有待进一步改善.
(19) (本小题满分13分)
如图,在多面体ABCDEF中,四边形ABCD是正方形,AB=2EF=2,E F∥AB,EF⊥FB,∠BFC=90°,BF=FC,H为BC的中点,
(Ⅰ)求证:FH∥平面EDB;
(Ⅱ)求证:AC⊥平面EDB;
(Ⅲ)求四面体B—DEF的体积;
(本小题满分13分)本题考查空间线面平行,线面垂直,面面垂直,体积的计算等基础知识,同时考查空间想象能力与推理论证能力.
(Ⅰ) 证:设AC与BD交于点G,则G为AC的中点. 连EG,GH,由于H为BC的中点,故GH∥AB且 GH= AB 又EF∥AB且 EF= AB
∴EF∥GH. 且 EF=GH ∴四边形EFHG为平行四边形.
∴EG∥FH,而EG 平面EDB,∴FH∥平面EDB.
(Ⅱ)证:由四边形ABCD为正方形,有AB⊥BC.
又EF∥AB,∴ EF⊥BC. 而EF⊥FB,∴ EF⊥平面BFC,∴ EF⊥FH.
∴ AB⊥FH.又BF=FC H为BC的中点,FH⊥BC.∴ FH⊥平面ABCD.
∴ FH⊥AC. 又FH∥EG,∴ AC⊥EG. 又AC⊥BD,EG∩BD=G,
∴ AC⊥平面EDB.
(Ⅲ)解:∵ EF⊥FB,∠BFC=90°,∴ BF⊥平面CDEF.
∴ BF为四面体B-DEF的高. 又BC=AB=2, ∴ BF=FC=
(20)(本小题满分12分)
设函数f(x)= sinx-cosx+x+1, 0﹤x﹤2 ,求函数f(x)的单调区间与极值.
(本小题满分12分)本题考查导数的运算,利用导数研究函数的单调性与极值的方法,考查综合运用数学知识解决问题的能力.
解:由f(x)=sinx-cosx+x+1,0﹤x﹤2 ,
知 =cosx+sinx+1,
于是 =1+ sin(x+ ).
令 =0,从而sin(x+ )=- ,得x= ,或x=32 .
当x变化时, ,f(x)变化情况如下表:
X (0, )
( ,32 )
32
(32 ,2 )
+ 0 - 0 +
f(x) 单调递增↗ +2
单调递减↘ 32
单调递增↗
因此,由上表知f(x)的单调递增区间是(0, )与(32 ,2 ),单调递减区间是( ,32 ),极小值为f(32 )=32 ,极大值为f( )= +2.
(21)(本小题满分13分)
设 , ..., ,…是坐标平面上的一列圆,它们的圆心都在x轴的正半轴上,且都与直线y= x相切,对每一个正整数n,圆 都与圆 相互外切,以 表示 的半径,已知 为递增数列.
(Ⅰ)证明: 为等比数列;
(Ⅱ)设 =1,求数列 的前n项和.
(本小题满分13分)本题考查等比数列的基本知识,利用错位相减法求和等基本方法,考查抽象能力以及推理论证能力.
解:(Ⅰ)将直线y= x的倾斜角记为 , 则有tan = ,sin = 12 .
设Cn的圆心为( ,0),则由题意知 = sin = 12 ,得 = 2 ;同理 ,题意知 将 = 2 代入,解得 rn+1=3rn.
故{ rn }为公比q=3的等比数列.
(Ⅱ)由于r1=1,q=3,故rn=3n-1,从而 =n? ,
记Sn= , 则有 Sn=1+2?3-1+3?3-2+………+n? . ①
=1?3-1+2?3-2+………+(n-1) ? +n? . ② ①-②,得
=1+3-1 +3-2+………+ -n? = - n? = –(n+ )?
Sn= – (n+ )? .