您现在的位置是: 首页 > 教育改革 教育改革

高考导数的题型及解题技巧,高考导数的题

tamoadmin 2024-07-28 人已围观

简介1.问一个高考导数题2.高考导数一般都是第几题3.我明天要参加数学高考,求一道导数题的解答。4.高考数学题 关于导数的 请写出思路5.高考导数题求解答这是我从箐优网弄来的,花了两优点,有一些还一个个对过去,让你方便看些,望纳,谢谢分析:(I)由题意曲线y=f(x)在(1,f(1))处的切线方程为x+y=1,故可根据导数的几何意义与切点处的函数值建立关于参数的方程求出两参数的值;(II)由于f(x)

1.问一个高考导数题

2.高考导数一般都是第几题

3.我明天要参加数学高考,求一道导数题的解答。

4.高考数学题 关于导数的 请写出思路

5.高考导数题求解答

高考导数的题型及解题技巧,高考导数的题

这是我从箐优网弄来的,花了两优点,有一些还一个个对过去,让你方便看些,望纳,谢谢

分析:(I)由题意曲线y=f(x)在(1,f(1))处的切线方程为x+y=1,故可根据导数的几何意义与切点处的函数值建立关于参数的方程求出两参数的值;

(II)由于f(x)=x^n(1-x),可求f′(x)=(n+1)x^n-1((n/n+1)-x),利用导数研究函数的单调性,即可求出函数的最大值;

(III)结合(II),欲证f(x)<1/ne.由于函数f(x)的最大值f(n/n+1)=(n/n+1)^n(1-n/n+1)=n^n/(n+1)^n+1,故此不等式证明问题可转化为证明

n^n/(n+1)^n+1< 1/ne,对此不等式两边求以e为底的对数发现,可构造函数φ(t)=lnt-1+1/t,借助函数的最值证明不等式.

解答:解:(I)因为f(1)=b,由点(1,b)在x+y=1上,可得1+b=1,即b=0.

因为f′(x)=anx^n-1-a(n+1)x^n,所以f′(1)=-a.

又因为切线x+y=1的斜率为-1,所以-a=-1,即a=1,故a=1,b=0.

(II)由(I)知,f(x)=x^n(1-x),则有f′(x)=(n+1)x^n-1((n/n+1)-x),令f′(x)=0,解得x=n/n+1

在(0,n/n+1)上,导数为正,故函数f(x)是增函数;在(n/n+1,+∞)上导数为负,故函数f(x)是减函数;

故函数f(x)在(0,+∞)上的最大值为f(n/n+1)=(n/n+1)^n(1-n/n+1)=n^n/(n+1)^n+1

(III)令φ(t)=lnt-1+1/t,则φ′(t)=1/t -1/t^2=(t-1)/t^2(t>0)

在(0,1)上,φ′(t)<0,故φ(t)单调减;在(1,+∞),φ′(t)>0,故φ(t)单调增;

故φ(t)在(0,∞)上的最小值为φ(1)=0,

所以φ(t)>0(t>1)

则lnt>1-1/t,(t>1),

令t=1+1/n,得ln(1+1/n)>1/n+1,即ln(1+1/n)n+1>lne

所以(1+1/n)^n+1>e,即n^n/(n+1)n+1<1/ne

由(II)知,f(x)≤n^n/(n+1)^n+1<1/ne,

故所证不等式成立.

问一个高考导数题

x1是零点,带进去f(x1)=0,原不等式没有等号,自然后面也没有等号(注:等价就相当于前面成立,后面就成立;后面成立则前面成立,它这里是证明后面成立,来证明前面成立,即证f(2-x2)<0来证明x1+x2<2,不需要证明x1+x2=2)

高考导数一般都是第几题

f(x)=x^3-6x^2+3X+1

f'(x)=3x^2-12x+3=3(x^2-4x+1)

若令x^2-4x+1=0,则其两根分x=2±3^(1/2)

根据因式分解:x^2+(p+q)x+pq=0, 可分解为(x+p)(x+q)=0,方程的两根分别为x1=-p;x2=-q.

(x-x1)(x-x2)=0

由此,f'(x)=3x^2-12x+3=3(x^2-4x+1)=3[x-(2+3^1/2)][x-(2-3^1/2)] PS:3^1/2为根号下3

我明天要参加数学高考,求一道导数题的解答。

具体题号不一定,至少会有一道选择题和一道压轴大题大题共17分。部分地方出卷还会有相关填空题。

全国卷高考导数题型:

(1)求函数中某参数的值或给定参数的值求导数或切线。

(2)求函数的单调性或单调区间以及极值点和最值。

(3)恒成立或在一定条件下成立时求参数范围。

(4)构造新函数对新函数进行分析。

(5)零点问题。

高考数学题 关于导数的 请写出思路

你需要理解的是导数和函数增减性之间的关系。

当导数在某个区间内大于等于0时,则函数递增,小于等于0时,则函数递减。等于0时,则函数在该区间内为常值函数。对于你的问题,当a=-√6/2时,f′(x)=3x?+√6x+1/2 在实数域上都是大于等于0的,所以函数是递增的。你的数学老师说的没有错。

f′(x)=0时x=-√6/6是唯一的零点,此时x=-√6/6是函数f的平衡点,但即非极大值点,亦非极小值点。但f在实数域上仍然是递增函数。

高考导数题求解答

思考第三问我们要看图像,由(1),(2)问易得:f(x)的极大值点和极小值点分别为:A(-k,4k^2/e), B(k,0),且在<-k 和>k上单调递增,在-k到k上单调递减。于是很自然的(你要自己画一个图,问交点的问题通常要通过图形来思考)一定有一个区间L(比如(-k/2,k/2)或者[a,b]之类的开集、闭集、左开右闭或左闭右开的集合)使得当m?L时,f(x)与y=m有三个不同的交点。

这时我们知道在[-k,k]上,f(x)与y=m一定有一个交点,这样我们只需考虑在x>k和x< -k上f(x)与y=m何时有交点。

x>k时。由于f(x)连续且f(x)在k>=0上的极小值就等于0,因此只需考虑f(x)在k>0上的最大值。f(x)在k>0上单调递增,若对于t是一个实数,若存在x>k使得f(x)=t,则对于任意的0<y0<t, 都存在x0使得:f(x0)=y0。(这件事你看图就能明白,要证明需要大学知识,你能理解就好)。于是我们如果找到一个很大的x, 使得f(x)>4k^2/e, 则说明当m<=4k^2/e时,f(x)与y=m在x>k上必有交点。

于是,我们总能取到一个正整数N,使得:N>2k(只要在数轴上一个一个的数下去,这件事是办得到的,因为2k与2k+1是一个有限的数),令x=N, 于是:

f(x)=(N-k)^2 e^(N/k)

>k^2 e^2

>4k^2

>4k^2/e.

这样我们知道,只要0<m<=4k^2/e, 则f(x)与y=m在x>k上就有交点。

x<-k。易知0<f(x)<4k^2/e。现在只需考虑是否存在t>0使得在x< -k上,f(x)>=t总成立。同样的我们知道:在x< -k上,对于0<a<b, 若存在x1,x2< -k, f(x1)=a, f(x2)=b, 则对于任意的y0:a<y0<b, 必存在x0使得:f(x)=y0。于是对于任意的正数t,一定存在正整数N使得:1/N<t(实际上就是:N>1/t, 这也是可以做到的).

此时遇到问题:当x趋近于负无穷时,(x-k)^2趋近于正无穷,e^(x/k)趋近于0, 则它们相乘要趋近于什么呢?由于f(x)=(x-k)^2 e^(x/k)=(x-k)^2/(e(-x/k)), 那我们就考虑g=|(x-k)^2|=(x-k)^2与h=|e(-x/k)|的大小就好了。

针对于这道题的情况我们可以考察这样一件事:对于任意的正整数n, 存在一个正数x0,对于任意的x>n, e^x>x^n。(可以对n用数学归纳法)。

于是我们得到:存在x0>k>0, 当x<-x0<-k时:

|f(x)|=|(x-k)^2 e^(x/k)|

=|(x-k)^2/x^3|*|x^3/e(-x/k)|

<|(x-k)^2/x^3| -->0, x趋近于负无穷时。

从而我们知道:当0<m<4k^2/e时,在x<-k上,f(x)与y=m必有交点。

综上:若要f(x)与y=m必有3个交点则:0<m<4k^2/e

思路:找到极大值点、极小值点、升降区间,画图,比较,再分析得到结论。

(1) f'(x)=lnx +1-a

f'(x)=0, x=e^(a-1), 极值f(x)=-e^(a-1),

(A)a>1 ,

1<x<e^(a-1), f'(x)<0, 递减

x>=e^(a-1), f'(x)>0, 递增

(B), a<1

x>=1, f'(x)>=0, 递增

文章标签: # lt # gt # 10px