您现在的位置是: 首页 > 教育资讯 教育资讯

关于函数的高考题目,关于函数的高考题

tamoadmin 2024-05-31 人已围观

简介1.很难很那数学题! 已知定义在R上的奇函数f(x)满足f(x)=-f(x-2)2.高中三角函数题目解法3.求解一道高考数学填空题,题目如下,关于函数零点问题的,2014年天津文科14题,不胜感激啊,要思路和过程4.高考数学基础题有哪些5.高1函数解题方法的名称+例题已知函数f(x)=ln[e^x+a](a为常数)是实数集R上的奇函数,函数g(x)=λf(x)+sinx是区间[-1,1]上的减函数

1.很难很那数学题! 已知定义在R上的奇函数f(x)满足f(x)=-f(x-2)

2.高中三角函数题目解法

3.求解一道高考数学填空题,题目如下,关于函数零点问题的,2014年天津文科14题,不胜感激啊,要思路和过程

4.高考数学基础题有哪些

5.高1函数解题方法的名称+例题

关于函数的高考题目,关于函数的高考题

已知函数f(x)=ln[e^x+a](a为常数)是实数集R上的奇函数,

函数g(x)=λf(x)+sinx是区间[-1,1]上的减函数。

(1)求a的值。

(2)若g(x)≤t?+λt+1在x∈[-1,1]上恒成立,求t的取值范围。

(3)讨论关于x的方程(lnx)/f(x)=x?-2ex+m的根的个数。

(1)f(x)是奇函数--->f(0)=0,即ln(1+a)=0--->a=0

(2)--->f(x)=x--->g(x)=λx+sinx是区间[-1,1]上的减函数

--->g'(x)=λ+cosx≤0在区间[-1,1]上恒成立--->λ≤-1

--->g(x)=λx+sinx在[-1,1]上的最大值=g(-1)=-(λ+sin1)

g(x)≤t?+λt+1在x∈[-1,1]上恒成立即:g(-1)≤t?+λt+1成立

--->t?+λt+(1+λ+sin1)≥0--->λ(t+1)≥-(t?+1+sin1)

∵λ≤-1,∴(t+1)<0且-(t?+1+sin1)/(t+1)≥-1

--->t?+1+sin1≥t+1--->t?-t+sin1≥0,

Δ<0显然成立

--->t<-1

(3)(lnx)/f(x)=x?-2ex+m?

很难很那数学题! 已知定义在R上的奇函数f(x)满足f(x)=-f(x-2)

当前,我们已进入高三一轮复习,函数是高中数学的核心内容,也是学习高等数学的基础,是数学中最重要的概念之一,它贯穿中学数学的始终。求函数解析式是函数部分的基础,在高考试题中多以选择、填空形式出现,属中低档题目,同学们务必要拿分。下面就向同学们介绍几种求函数解析式的常用方法:

[题型一]配凑法

例1.已知f(■+1)=x+2■,求f(x)。

分析:函数的解析式y=f(x)是自变量x确定y值的关系式,其实质是对应法则f:x→y,因此解决这类问题的关键是弄清对“x”而言,“y”是怎样的规律。

解:∵f(■+1)=x+2■=(■+1)2-1

(■+11)

∴f(x)=x2-1(x1)

小结:此种解法为配凑法,通过观察、分析,将右端“x+2■”变为接受对象“■+1”的表达式,即变为含(■+1)的表达式,这种解法对变形能力、观察能力有一定的要求。

[题型二]换元法

例2.已知f(1-cosx)=sin2x,求f(x)。

分析:视1-cosx为一整体,应用数学的整体化思想,换元即得。

解:设t=1-cosx

∵-1cosx1 ∴01-cosx2 即0t2

∴cosx=1-t

∴sin2x=1-cos2x=1-(1-t)2=-t2+2t

∴f(t)=-t2+2t(0t2)

即f(x)=-x2+2x(0x2)

小结:①已知f[g(x)]是关于x的函数,即f[g(x)]=F(x),求f(x)的解析式,通常令g(x)=t,由此能解出x=(t),将x=(t)代入f[g(x)]=F(x)中,求得f(t)的解析式,再用x替换t,便得f(x)的解析式。

注意:换元后要确定新元t的取值范围。

②换元法就是通过引入一个或几个新的变量来替换原来的某些变量的解题方法,它的基本功能是:化难为易、化繁为简,以快速实现未知向已知的转换,从而达到顺利解题的目的。常见的换元法是多种多样的,如局部换元、整体换元、三角换元、分母换元等,它的应用极为广泛。

[题型三]待定系数法

例3.设二次函数f(x)满足f(x+2)=f(2-x),且f(x)=0的两实根平方和为10,图象过点(0,3),求f(x)的解析式。

分析:由于f(x)是二次函数,其解析式的基本结构已定,可用待定系数法处理。

解:设f(x)=ax2+bx+c(a≠0)

由f(x+2)=f(2-x)可知,该函数图象关于直线x=2对称

∴-■=2,即b=-4a……①

又图象过点(0,3) ∴c=3……②

由方程f(x)=0的两实根平方和为10,得(-■)2-■=0

即b2-2ac=10a2……③

由①②③解得a=1,b=-4,c=3

∴f(x)=x2-4x+3

小结:我们只要明确所求函数解析式的类型,便可设出其函数解析式,设法求出其系数即可得到结果。类似的已知f(x)为一次函数时,可设f(x)=ax+b(a≠0);f(x)为反比例函数时,可设f(x)=■(k≠0);f(x)为二次函数时,根据条件可设

①一般式:f(x)=ax2+bx+c(a≠0)

②顶点式:f(x)=a(x-h)2+k(a≠0)

③双根式:f(x)=a(x-x1)(x-x2)(a≠0)

[题型四]消元法

例4.已知函数y=f(x)满足af(x)+bf(■)=cx,其中a、b、c都是非零常数,a≠±b,求函数y=f(x)的解析式。

分析:求函数y=f(x)的解析式,由已知条件知必须消去f(■),不难想到再寻找一个方程,构成方程组,消去f(■)得f(x)。如何构成呢?充分利用x和■的倒数关系,用■去替换已知中的x便可得到另一个方程。

解:在已知等式中,将x换成■,得af(■)+bf(x)=■,把它与原条件式联立,得af(x)+bf(■)=cx……①af(■)+bf(x)=■……②

①×a-②×b得(a2-b2)f(x)=c(ax-■)

∵a≠±b ∴f(x)=■(ax-■)(x≠0)

(周六继续刊登)

有同学通过QQ询问下面的数学题,我们请天津四中的孟黎辉老师来回答。

问1.已知:方程:x2+ax+a+1=0的两根满足一个条件:一根大于k,一根小于k(k是实数),求a的取值范围。(此题一种方法是图象法,还有一种方法,能告诉这两种方法吗?)

答:方法一:∵f(x)=x2+ax+a+1图象为开口向上的抛物线,因此只需f(k)<0即可。

∴k2+ak+a+1<0,即a(k+1)<-k2-1

∴当k>-1时,a<■;当k<-1时,a>■;当k=-1时,a无解。

方法二:(x1-k)(x2-k)<0△>0

只需(x1-k)(x2-k)<0即可,x1x2-k(x1+x2)+k2<0

即a+1+ka+k2<0,以下同方法一。

问2.为什么求解时只需求(x1-k)(x2-k)<0,而不需再求根的判别式是否大于0?

答:法二不需要验判别式,原因可以举个简单例子说明,如:若研究x2+ax+b=0两根满足:一个根大于0,一个根小于0,只需x1x2<0,即:b<0,此时就可以保证△=a2-4b>0恒成立。

高中三角函数题目解法

此题是2009年山东高考试题(理科)第16题,原题是这样子:

已知定义在R上的奇函数f(x)满足f(x)=-f(x-4),且在区间0,2上为增函数,若方程f(x)=m(m>0)在区间-8,8上有四个不同的根X1 X2 X3 X4,则X1+X2+X3+X4 =?

解定义在R上的奇函数f(x)满足f(x)=-f(x-4),

所以f(x)= f(4-x),函数图像关于直线x=2对称且f(0)=0.

由f(x-4) =- f(x)可知:f(x-8) =f(x),函数周期为8.

又因函数在区间0,4上为增函数,所以函数在-4,0上也是增函数。

根据以上分析可以画出函数图像的简图。

方程f(x)=m(m>0)在区间-8,8上有四个不同的根X1,X2,X3,X4,

不妨设X1<X2<X3<X4,由对称性可知:X1+X2=-12,X3+X4=4,所以X1+X2+X3+X4=-8.

求解一道高考数学填空题,题目如下,关于函数零点问题的,2014年天津文科14题,不胜感激啊,要思路和过程

三角函数最值问题类型归纳 三角函数的最值问题是三角函数基础知识的综合应用,近几年的高考题中经常出现。其出现的形式,或者是在小题中单纯地考察三角函数的值域问题;或者是隐含在解答题中,作为解决解答题所用的知识点之一;或者在解决某一问题时,应用三角函数有界性会使问题更易于解决(比如参数方程)。题目给出的三角关系式往往比较复杂,进行化简后,再进行归纳,主要有以下几种类型。掌握这几种类型后,几乎所有的三角函数最值问题都可以解决。 1.y=asinx+bcosx型的函数 特点是含有正余弦函数,并且是一次式。解决此类问题的指导思想是把正、余弦函数转化为只有一种三角函数。应用课本中现成的公式即可:y=sin(x+φ),其中tanφ=。  例1.当-≤x≤时,函数f(x)=sinx+cosx的( D ) A、最大值是1,最小值是-1  B、最大值是1,最小值是- C、最大值是2,最小值是-2  D、最大值是2,最小值是-1 分析:解析式可化为f(x)=2sin(x+),再根据x的范围来解即可。 2.y=asin2x+bsinxcosx+cos2x型的函数  特点是含有sinx, cosx的二次式,处理方式是降幂,再化为型1的形式来解。 例2.求y=sin2x+2sinxcosx+3cos2x的最小值,并求出y取最小值时的x的集合。 解:y=sin2x+2sinxcosx+3cos2x     =(sin2x+cos2x)+sin2x+2cos2x     =1+sin2x+1+cos2x    =2+   当sin(2x+)=-1时,y取最小值2-,此时x的集合。  3.y=asin2x+bcosx+c型的函数 特点是含有sinx, cosx,并且其中一个是二次,处理方式是应用sin2x+cos2x=1,使函数式只含有一种三角函数,再应用换元法,转化成二次函数来求解。 例3.求函数y=cos2x-2asinx-a(a为常数)的最大值M。 解:y=1-sin2x-2asinx-a=-(sinx+a)2+a2+1-a,  令sinx=t,则y=-(t+a)2+a2+1-a, (-1≤t≤1) (1) 若-a<-1时,即a>1时, 在t=-1时,取最大值M=a。  (2) 若-1≤-a≤1,即-1≤a≤1时,在t=-a时,取最大值M=a2+1-a。  (3) 若-a>1,即a<-1时,在t=1时,取大值M=-3a。  4.y=型的函数 特点是一个分式,分子、分母分别会有正、余弦的一次式。几乎所有的分式型都可以通过分子,分母的化简,最后整理成这个形式,它的处理方式有多种。 例4.求函数y=的最大值和最小值。 解法1:原解析式即:sinx-ycosx=2-2y, 即sin(x+φ)=, ∵ |sin(x+φ)|≤1,∴≤1,解出y的范围即可。 解法2:表示的是过点(2, 2)与点(cosx, sinx)的斜率,而点(cosx, sinx)是单位圆上的点,观察图形可以得出在直线与圆相切时取极值。 解法3:应用万能公式设t=tan(),则y=,即(2-3y)t2-2t+2-y=0,  根据Δ≥0解出y的最值即可。 5.y=sinxcos2x型的函数。 它的特点是关于sinx,cosx的三次式(cos2x是cosx的二次式)。因为高中数学不涉及三次函数的最值问题,故几乎所有的三次式的最值问题(不只是在三角)都用均值不等式来解(没有其它的方法)。但需要注意是否符合应用的条件(既然题目让你求,多半是符合使用条件的,但做题不能少这一步),及等号是否能取得。 例5.若x∈(0,π),求函数y=(1+cosx)·sin的最大值。 解:y=2cos2·sin>0, y2=4cos4sin2   =2·cos2·cos2·2sin2     所以0<y≤。  注:本题的角和函数很难统一,并且还会出现次数太高的问题。 6.含有sinx与cosx的和与积型的函数式。 其特点是含有或经过化简整理后出现sinx+cosx与sinxcosx的式子,处理方式是应用(sinx+cosx)2=1+2sinxcosx 进行转化,变成二次函数来求解

</A>

高考数学基础题有哪些

这个题主要考查函数零点个数的应用,利用数形结合是解决本题的关键,综合性较强,难度较大.

由y=f(x)-a|x|得f(x)=a|x|,利用数形结合即可得到结论。

解: 由y=f(x)-a|x|=0得f(x)=a|x|,做出函数y=f(x),y=a|x|的图像,当a≤0时,不满足条件,所以a>0.这是详细的答案已知函数f(x)=|x?+5x+4|,x≤0 ? 2|x-2|,x>0,若函数y=f(x)-a|x|恰有4个零点,则实数a的取值范围

仔细琢磨下答案,这种题基础还是很重要的,掌握好基础知识后,举一反三,分析的时候一种情况一种情况的来,不要搞乱了,希望对你有所帮助,加油~ 有用的话希望给个采纳哦!

高1函数解题方法的名称+例题

高考数学基础题二次函数、复合函数。

1、二次函数。

二次函数解析式的三种形式:

一般式:f(x)=ax2+bx+c(a≠0)。?

顶点式:f(x)=a(x-m)2+n(a≠0)。

零点式:f(x)=a(x-x1)(x-x2)(a≠0)。?

辨明两个易误点:

对于函数y=ax2+bx+c,要认为它是二次函数,就必须满足a≠0,当题目条件中未说明a≠0时,就要讨论a=0和a≠0两种情况。

幂函数的图象一定会出现在第一象限内,一定不会出现在第四象限内,至于是否出现在第二、三象限内,要看函数的奇偶性;幂函数的图象最多只能同时出现在两个象限内;如果幂函数图象与坐标轴相交,则交点一定是原点。

2、复合函数。

设函数Y=f(u)的定义域为D,函数u=φ(x)的值域为Z,如果D∩Z,则y通过u构成x的函数,称为x的复合函数,记作Y=f(φ(x))。

x为自变量,y为因变量,而u称为中间变量。? 如等都是复合函数。? 就不是复合函数,因为任何x都不能使y有意义。由此可见,不是任何两个函数放在一起都能构成一个复合函数。

高考数学必备技巧:

1、三个“基本”:基本的概念要清楚,基本的规律要熟悉,基本的方法要熟练。

2、做完题目后一定要认真总结,做到举一反三,这样,以后遇到同一类的问题是就不会花费太多的时间和精力了。

3、一定要全面了解数学概念,不能以偏概全。

4、学习概念的最终目的是能运用概念来解决具体问题,因此,要主动运用所学的数学概念来分析,解决有关的数学问题。

5、要掌握各种题型的解题方法,在练习中有意识的地去总结,慢慢地培养适合自己的分析习惯。

6、要主动提高综合分析问题的能力,借助文字阅读去分析理解。

7、在学习中,要有意识地注意知识的迁移,培养解决问题的能力。

8、要将所学知识贯穿在一起形成系统,我们可以运用类比联系法。

9、将各章节中的内容互相联系,不同章节之间互相类比,真正将前后知识融会贯通,连为一体,这样能帮助我们系统深刻地理解知识体系和内容。

10、在数学学习中可以利用口诀将相近的概念或规律进行比较,搞清楚它们的相同点,区别和联系,从而加深理解和记忆。弄清数学知识间的相互联系,透彻理解概念,知道其推导过程,使知识条理化,系统化。

抽象函数

一般形式为 y=f(x)且无法用数字和字母表示出来的函数,一般出现在题目中,或许有定义域、值域等。

1抽象函数常常与周期函数结合,如:

f(x)=-f(x+2)

f(x)=f(x+4)

2解抽象函数题,通常要用赋值法,而且高考数学中,常常要先求F(0) F(1)

抽象函数的经典题目!!!

我们把没有给出具体解析式的函数称为抽象函数。由于这类问题可以全面考查学生对函数概念和性质的理解,同时抽象函数问题又将函数的定义域,值域,单调性,奇偶性,周期性和图象集于一身,所以在高考中不断出现;如2002年上海高考卷12题,2004年江苏高考卷22题,2004年浙江高考卷12题等。学生在解决这类问题时,往往会感到无从下手,正确率低,本文就这类问题的解法谈一点粗浅的看法。

一.特殊值法:在处理选择题时有意想不到的效果。

例1 定义在R上的函数f(x)满足f (x + y) = f (x) + f ( y )(x,y∈R),当x<0时,, f (x)>0,则函数f (x)在[a,b]上 ( )

A 有最小值f (a) B有最大值f (b) C有最小值f (b) D有最大值f ( )

分析:许多抽象函数是由特殊函数抽象背景而得到的,如正比例函数f (x)= kx(k≠0), , , ,可抽象为f (x + y) = f (x) +f (y),与此类似的还有

特殊函数 抽象函数

f (x)= x f (xy) =f (x) f (y)

f (x)=

f (x+y)= f (x) f (y)

f (x)=

f (xy) = f (x)+f (y)

f (x)= tanx f(x+y)=

此题作为选择题可采用特殊值函数f (x)= kx(k≠0)

∵当x <0时f (x) > 0即kx > 0。.∴k < 0,可得f (x)在[a,b]上单调递减,从而在[a,b]上有最小值f(b)。

二.赋值法.根据所要证明的或求解的问题使自变量取某些特殊值,从而来解决问题。

例2 除了用刚才的方法外,也可采用赋值法

解:令y = -x,则由f (x + y) = f (x) + f (y) (x,y∈R)得f (0) = f (x) +f (-x)…..①,

再令x = y = 0得f(0)= f(0)+ f(0)得f (0)=0,代入①式得f (-x)= -f(x)。

得 f (x)是一个奇函数,再令 ,且 。

∵x <0,f (x) >0,而 ∴ ,则得 ,

即f (x)在R上是一个减函数,可得f (x)在[a,b]上有最小值f(b)。

例3 已知函数y = f (x)(x∈R,x≠0)对任意的非零实数 , ,恒有f( )=f( )+f( ),

试判断f(x)的奇偶性。

解:令 = -1, =x,得f (-x)= f (-1)+ f (x) ……①为了求f (-1)的值,令 =1, =-1,则f(-1)=f(1)+f(-1),即f(1)=0,再令 = =-1得f(1)=f(-1)+f(-1)=2f(-1) ∴f(-1)=0代入①式得

f(-x)=f(x),可得f(x)是一个偶函数。

三.利用函数的图象性质来解题:

抽象函数虽然没有给出具体的解析式,但可利用它的性质图象直接来解题。

抽象函数解题时常要用到以下结论:

定理1:如果函数y=f(x)满足f(a+x)=f(b-x),则函数y=f(x)的图象关于x= 对称。

定理2:如果函数y=f(x)满足f(a+x)=f(b+x),则函数y=f(x)是一个周期函数,周期为a-b。

例4 f(x)是定义在R上的偶函数,且f(x)=f(2-x),证明f(x)是周期函数。

分析:由 f(x)=f(2-x),得 f(x)的图象关于x=1对称,又f(x)是定义在R上的偶函数,图象关于y轴对称,根据上述条件,可先画出符合条件的一个图,那么就可以化无形为有形,化抽象为具体。从图上直观地判断,然后再作证明。

由图可直观得T=2,要证其为周期函数,只需证f (x) = f (2 + x)。

证明:f (x) = f (-x) = f [2-(-x)] = f (2 + x),∴ T=2。

∴f (x)是一个周期函数。

例5 已知定义在[-2,2]上的偶函数,f (x)在区间[0,2]上单调递减,若f (1-m)<f (m),求实数m的取值范围

分析:根据函数的定义域,-m,m∈[-2,2],但是1- m和m分别在[-2,0]和[0,2]的哪个区间内呢?如果就此讨论,将十分复杂,如果注意到偶函数,则f (x)有性质f(-x)= f (x)=f ( |x| ),就可避免一场大规模讨论。

解:∵f (x)是偶函数, f (1-m)<f(m) 可得 ,∴f(x)在[0,2]上是单调递减的,于是 ,即 化简得-1≤m< 。

采纳我的吧

文章标签: # 函数 # gt # 问题