您现在的位置是: 首页 > 教育资讯 教育资讯

有关高考的数学题试卷本子图片,有关高考的数学题试卷本

tamoadmin 2024-05-15 人已围观

简介2006年上海高考数学试卷(文科) 一.填空题:(本大题共12小题,每小题4分,共48分) 1. 已知集合A = { –1 , 3 , 2m – 1 },集合B = { 3 , 4 }。若B ? A,则实数m =__。 2. 已知两条直线l1:ax + 3y – 3 = 0 , l2:4x + 6y – 1 = 0。若l1l2,则a =______。 3. 若函数f(x) = ax(a >

有关高考的数学题试卷本子图片,有关高考的数学题试卷本

2006年上海高考数学试卷(文科)

一.填空题:(本大题共12小题,每小题4分,共48分)

1. 已知集合A = { –1 , 3 , 2m – 1 },集合B = { 3 , 4 }。若B ? A,则实数m =__。

2. 已知两条直线l1:ax + 3y – 3 = 0 , l2:4x + 6y – 1 = 0。若l1‖l2,则a =______。

3. 若函数f(x) = ax(a > 0且a ? 1)的反函数的图像过点( 2 , –1 ),则a =_____。

4. 计算: =__________。

5. 若复数z = ( m – 2 ) + ( m + 1 )i为纯虚数(i为虚数单位),其中m ? R,则| | =__________。

6. 函数y = sinxcosx的最小正周期是_____________。

7. 已知双曲线的中心在原点,一个顶点的坐标是( 3 , 0 ),且焦距与虚轴长之比为5:4,则双曲线的标准方程是________。

8. 方程log3( x2 – 10 ) = 1 + log3x的解是_______。

9. 已知实数x , y满足 ,则y – 2x的最大值是______。

10. 在一个小组中有8名女同学和4名男同学,从中任意地挑选2名同学担任交通安全宣传志愿者,那么选到的两名都是女同学的概率是__________。(结果用分数表示)

11. 若曲线|y|2 = 2x + 1与直线y = b没有公共点,则b的取值范围是________。

12. 如图,平面中两条直线l1和l2相交于点O。对于平面上任意一点M,若p , q分别是M到直线l1和l2的距离,则称有序非负实数对( p , q )是点M的“距离坐标”。根据上述定义,“距离坐标”是( 1 , 2 )的点的个数是________。

二.选择题:(本大题共4小题,每小题4分,共16分)

13. 如图,在平行四边形ABCD中,下列结论中错误的是( )

(A) (B)

(C) (D)

14. 如果a < 0 , b > 0,那么,下列不等式中正确的是( )

(A) (B) (C) a2 < b2 (D) |a| > |b|

15. 若空间中有两条直线,则“这两条直线为异面直线”是“这两条直线没有公共点”的( )

(A)充分非必要条件 (B)必要非充分条件

(C)充分必要条件 (D)既非充分又非必要条件

16. 如果一条直线与一个平面垂直,那么,称此直线与平面构成一个“正交线面对”,在一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“正交线面对”的个数是( )

(A) 48 (B) 18 (C)24 (D) 36

三.解答题:(本大题共6小题,共86分)

17.(本小题满分12分)

已知a是第一象限的角,且 ,求 的值。

18.(本小题满分12分)

如图,当甲船位于A处时获悉,在其正东方向相距20海里的B处有一艘渔船遇险等待营救。甲船立即前往救援,同时把消息告知在甲船的南偏西30°,相距10海里C处的乙船,试问乙船应朝北偏东多少度的方向沿直线前往B处救援(角度精确到1°)?

19.(本小题满分14分)

在直三棱柱ABC-A1B1C1中,?ABC = 90° , AB = BC = 1。

(1) 求异面直线B1C1与AC所成角的大小;

(2) 若直线A1C与平面ABC所成角为45°,求三棱锥A1-ABC的体积。

20.(本小题满分14分)

设数列{an}的前n项和为Sn,且对任意正整数n×an + Sn = 4096。

(1) 求数列{an}的通项公式;

(2) 设数列{log2an}的前n项和为Tn,对数列{Tn},从第几项起Tn < –509?

21.(本小题满分16分)

已知在平面直角坐标系xOy中的一个椭圆,它的中心在原点,左焦点为F( , 0 ),且右顶点为D( 2 , 0 ),设点A的坐标是( 1 , )。

(1) 求该椭圆的标准方程;

(2) 若是P椭圆上的动点,求线段PA中点M的轨迹方程;

(3) 过原点O的直线交椭圆于点B , C,求△ABC面积的最大值。

22.(本小题满分18分)

已知函数 有如下性质:如果常数a > 0,那么该函数在 上是减函数,在 上是增函数。

(1) 如果函数 在 上是减函数,在 上是增函数,求实常数b的值;

(2) 设常数c ? [ 1 , 4 ],求函数 ( 1 ? x ? 2 )的最大值和最小值;

(3) 当n是正整数时,研究函数 ( c > 0 )的单调性,并说明理由。

上海数学(文史类)参考答案

一、(第1题至笫12题)

1. 4 2. 2 3. 4. 5. 3 6.π 7.

8. 5 9. 0 10. 11.-1<b<1 12. 4

二、(第13题至笫16题)

13. C 14. A 15. A 16. D

三、(第17题至笫22题)

17.解: =

由已知可得sin ,

∴原式= .

18.解:连接BC,由余弦定理得BC2=202+102-2×20×10COS120°=700.

于是,BC=10 .

∵ , ∴sin∠ACB= ,

∵∠ACB<90° ∴∠ACB=41°

∴乙船应朝北偏东71°方向沿直线前往B处救援.

19.解:(1) ∵BC‖B1C1, ∴∠ACB为异面直线B1C1与AC所成角(或它的补角)

∵∠ABC=90°, AB=BC=1, ∴∠ACB=45°,

∴异面直线B1C1与AC所成角为45°.

(2) ∵AA1⊥平面ABC,

∠ACA1是A1C与平面ABC所成的角, ∠ACA =45°.

∵∠ABC=90°, AB=BC=1, AC= ,

∴AA1= .

∴三棱锥A1-ABC的体积V= S△ABC×AA1= .

20.解(1) ∵an+ Sn=4096, ∴a1+ S1=4096, a1 =2048.

当n≥2时, an= Sn-Sn-1=(4096-an)-(4096-an-1)= an-1-an

∴ = an=2048( )n-1.

(2) ∵log2an=log2[2048( )n-1]=12-n,

∴Tn= (-n2+23n).

由Tn<-509,解待n> ,而n是正整数,于是,n≥46.

∴从第46项起Tn<-509.

21.解(1)由已知得椭圆的半长轴a=2,半焦距c= ,则半短轴b=1.

又椭圆的焦点在x轴上, ∴椭圆的标准方程为

(2)设线段PA的中点为M(x,y) ,点P的坐标是(x0,y0),

由 x= 得 x0=2x-1

y= y0=2y-

由,点P在椭圆上,得 ,

∴线段PA中点M的轨迹方程是 .

(3)当直线BC垂直于x轴时,BC=2,因此△ABC的面积S△ABC=1.

当直线BC不垂直于x轴时,说该直线方程为y=kx,代入 ,

解得B( , ),C(- ,- ),

则 ,又点A到直线BC的距离d= ,

∴△ABC的面积S△ABC=

于是S△ABC=

由 ≥-1,得S△ABC≤ ,其中,当k=- 时,等号成立.

∴S△ABC的最大值是 .

22.解(1) 由已知得 =4, ∴b=4.

(2) ∵c∈[1,4], ∴ ∈[1,2],

于是,当x= 时, 函数f(x)=x+ 取得最小值2 .

f(1)-f(2)= ,

当1≤c≤2时, 函数f(x)的最大值是f(2)=2+ ;

当2≤c≤4时, 函数f(x)的最大值是f(1)=1+c.

(3)设0<x1<x2,g(x2)-g(x1)= .

当 <x1<x2时, g(x2)>g(x1), 函数g(x)在[ ,+∞)上是增函数;

当0<x1<x2< 时, g(x2)>g(x1), 函数g(x)在(0, ]上是减函数.

当n是奇数时,g(x)是奇函数,

函数g(x) 在(-∞,- ]上是增函数, 在[- ,0)上是减函数.

当n是偶数时, g(x)是偶函数,

函数g(x)在(-∞,- )上是减函数, 在[- ,0]上是增函数.

2022年高考数学试题有哪些新变化?

2022年高考数学落实立德树人根本任务,促进学生德智体美劳全面发展,体现高考改革的要求。试卷突出数学学科特点,强化基础考查,突出关键能力,加强教考衔接,服务“双减”政策实施,助力基础教育提质增效。

变化一、设置现实情境,发挥育人作用

高考数学命题坚持思想性与科学性的统一,发挥数学应用广泛、联系实际的学科特点,设置真实情境,命制具有教育意义的试题,发挥数学考试的教育功能和引导作用。

变化二、设置优秀传统文化情境

数学试卷以中华优秀传统文化为试题情境材料,让学生领略中华民族的智慧和数学研究成果,进一步树立民族自信心和自豪感,培育爱国主义情感。如新高考Ⅱ卷第3题以中国古代建筑中的举架结构为背景,考查学生综合应用等差数列、解析几何、三角函数等基础知识解决实际问题的能力。全国甲卷理科第8题取材于我国古代科学家沈括的杰作《梦溪笔谈》,以沈括研究的圆弧长计算方法“会圆术”为背景,让学生直观感受我国古代科学家探究问题和解决问题的过程,引发学生的学习兴趣。

变化三、设置社会经济发展情境

数学科高考以我国的社会经济发展、生产生活实际为情境素材设置试题。如新高考Ⅰ卷第4题以我国的重大建设成就“南水北调”工程为背景,考查学生的空间想象、运算求解能力,试题引导学生关注社会主义建设的成果,增强社会责任感。全国甲卷文、理科第2题以社区环境建设中的“垃圾分类”为背景考查学生的数据分析能力。全国乙卷文、理科第19题以生态环境建设为背景材料,考查学生应用统计的基本知识和基础方法解决实际问题的能力,对数据处理与数学运算素养也作了相应的考查。

2022新高考全国卷的数学题是什么难度?有多少基础分?

随着高考的结束,很多考生都在抱怨本次高考中的数学考试难度非常之大,而很多考生说这次考试想拿数学满分是不可能的事情。而根据权威部门所发布的消息,2022年新高考全国卷的数学题处于中上等难度,相比往年的高考难度增加了一些,而这样做的目的就是加大考生与考生之间的竞争。而高考中的数学题的基础分大概在30~50分之间,因为这个基础分是最基本的一些题型,只要考生在上课期间认真听课,认真复习这些分都能拿满。

一、2022年新高考全国卷的数学题处于中上等难度

根据相关媒体报道,本次出题是由全国的高考专家库出题的,而这次高考数学题的难度为中上等,要比往年的高考难度增加了许多。而本年度的高考很多考生都在反映数学题非常难,都是一些在课程上没有见过的题型,而这又从侧面反映了学校在教课期间并没有对数学题的一些知识内容进行扩展,而只是把重点放在了书本上,所以从这一点上考生们没有接触到新型题型,自然会感觉很难。二、基础分大概在30~50分

一般来讲,全国数学题考试卷总分在150分,而基础分都会设置在30分到50分左右,而根据专家透露的消息,2022年的高考基础分在30分到50分左右,这些题型在课本上都是能见得到的,只要考生在上课期间认真听讲,认真做笔记那么是完全可以拿到这些分数的,因为这是最基础的一种题型。三、总结

总的来说,本年度的高考确实很难,甚至把深圳中学的一个学霸都给考哭了,而很多数学教师在做数学高考试卷的时候都感觉很难,通常要花费两个小时以上才能把所有题型做完,并且还拿不到满分。而还有考生反映往年的高考都有人保证数学成绩能拿满分,而今年的考生则反映没有人敢保证敢拿数学成绩的满分,这就直接表明本年度高考数学这个难度是很难的。

2022年高考数学全国乙卷试题“难到哭”,与往年相比真的很难吗?

数学题真的很难吗?这是毋庸置疑的,因为高考并不是一场很普通的考试,高考是涉及到选拔人才的,如果说太过于简单的话,那么考试还有什么必要呢那么今年的数学题呢其实难度是有点难度,但是并不是很难,因为对于那些学霸来说是稍微有那么点难度,因为这是选拔性的考试,而不是普通的考试,有难度也是很正常的,如果没有任何难度的话,你就没有必要去举举行这样的考试,因为这样的考试就是为了选拔人才而存在的一次考试。

有难度才能出现真水平

数学试卷之所以难,张新伟数学试卷能够体现出一个人在数学当中的真正水平,那么现在这个数学试卷非常的难也是很正常的,因为这是选拔性的考试,如果说有人在这么困难的试卷当中依然是拿了很高的分,这就证明了这个人的水平是真的,强但是难是很正常的,因为如果没有难度的话,就没有人会去考这一次试的,对于很多学霸来说,这一次的考试也是稍微有点难度,并不是很难有很多的学霸在考完也说了,稍微有点难度。

都是一样的

这次考试说数学试卷难其实也是一样的,对于大家来说都是考同一份试卷,你觉得这一份试卷难,大家都觉得这一份试卷是非常难的,所以说大家都是站在同一起跑线上的,难与不难都是考同一份试卷,所以说是很公平的,比起之前的考试来说,也是增加了一些难度,但并没有增加很多。

总的来说这一次的考试是比较难,但是是挑选顶尖的那种数学人才而进行的一次考试,每一次的考试都是对于数学水平高的人才的一次挑选,如果那种水平很高的人才的话,他必然是能够考很高分的,并不会因为增加那么点难度而考了低分

文章标签: # 高考 # 直线 # 难度