您现在的位置是: 首页 > 教育资讯 教育资讯
数学答题技巧高考-数学高考答题技巧总结
tamoadmin 2024-08-19 人已围观
简介1.高考数学答题技巧及常用高中数学解题方法2.高考数学常考题型答题技巧与方法有哪些3.高考数学选择题答题技巧高考数学答题技巧及常用高中数学解题方法1、圆锥曲线中最后题往往联立起来很复杂导致k算不出,这时你可以取特殊值法强行算出k过程就是先联立,后算代尔塔,用下伟达定理,列出题目要求解的表达式,就可以了。2、选择题中如果有算锥体体积和表面积的话,直接看选项面积找到差2倍的小的就是答案,体积找到差3倍
1.高考数学答题技巧及常用高中数学解题方法
2.高考数学常考题型答题技巧与方法有哪些
3.高考数学选择题答题技巧
高考数学答题技巧及常用高中数学解题方法
1、圆锥曲线中最后题往往联立起来很复杂导致k算不出,这时你可以取特殊值法强行算出k过程就是先联立,后算代尔塔,用下伟达定理,列出题目要求解的表达式,就可以了。
2、选择题中如果有算锥体体积和表面积的话,直接看选项面积找到差2倍的小的就是答案,体积找到差3倍的小的就是答案,屡试不爽!
3、三角函数第二题,如求a(cosB+cosC)/(b+c)coA之类的先边化角然后把第一题算的比如角A等于60度直接设B和C都等于60°带入求解。省时省力!
4、空间几何证明过程中有一步实在想不出把没用过的条件直接写上然后得出想不出的那个结论即可。如果第一题真心不会做直接写结论成立则第二题可以直接用!用常规法的同学建议先随便建立个空间坐标系,做错了还有2分可以得!
5、立体几何中第二问叫你求余弦值啥的一般都用坐标法!如果求角度则常规法简单!
6、选择题中考线面关系的可以先从D项看起前面都是来浪费你时间的。
7、选择题中求取值范围的直接观察答案从每个选项中取与其他选项不同的特殊点带入能成立的就是答案。
8、线性规划题目直接求交点带入比较大小即可。
9、遇到选项A.1/2,B.1,C.3/2,D.5/2这样的话答案一般是D因为B可以看作是2/2前面三个都是出题者凑出来的如果答案在前面3个的话D应该是2(4/2)。
高考数学常考题型答题技巧与方法有哪些
高考像漫漫人生路上的一道坎,无论成败与否,我认为现在都不重要了,重要的是要 总结 高考的得与失,以便在今后的人生之路上迈好每一个坎!下面就是我给大家带来的高考数学常考题型答题技巧与 方法 ,希望大家喜欢!
高考数学常考题型答题技巧与方法
1、解决绝对值问题
主要包括化简、求值、方程、不等式、函数等题,基本思路是:把含绝对值的问题转化为不含绝对值的问题。
具体转化方法有:
①分类讨论法:根据绝对值符号中的数或式子的正、零、负分情况去掉绝对值。
②零点分段讨论法:适用于含一个字母的多个绝对值的情况。
③两边平方法:适用于两边非负的方程或不等式。
④几何意义法:适用于有明显几何意义的情况。
2、因式分解
根据项数选择方法和按照一般步骤是顺利进行因式分解的重要技巧。因式分解的一般步骤是:
提取公因式
选择用公式
十字相乘法
分组分解法
拆项添项法
3、配方法
利用完全平方公式把一个式子或部分化为完全平方式就是配方法,它是数学中的重要方法和技巧。配方法的主要根据有:
4、换元法
解某些复杂的特型方程要用到“换元法”。换元法解方程的一般步骤是:
设元→换元→解元→还元
5、待定系数法
待定系数法是在已知对象形式的条件下求对象的一种方法。适用于求点的坐标、函数解析式、曲线方程等重要问题的解决。其解题步骤是:①设②列③解④写
6、复杂代数等式
复杂代数等式型条件的使用技巧:左边化零,右边变形。
①因式分解型:
(-----)(----)=0两种情况为或型
②配成平方型:
(----)2+(----)2=0两种情况为且型
7、数学中两个最伟大的解题思路
(1)求值的思路列欲求值字母的方程或方程组
(2)求取值范围的思路列欲求范围字母的不等式或不等式组
8、化简二次根式
基本思路是:把√m化成完全平方式。即:
9、观察法
10、代数式求值
方法有:
(1)直接代入法
(2)化简代入法
(3)适当变形法(和积代入法)
注意:当求值的代数式是字母的“对称式”时,通常可以化为字母“和与积”的形式,从而用“和积代入法”求值。
11、解含参方程
方程中除过未知数以外,含有的 其它 字母叫参数,这种方程叫含参方程。解含参方程一般要用‘分类讨论法’,其原则是:
(1)按照类型求解
(2)根据需要讨论
(3)分类写出结论
12、恒相等成立的有用条件
(1)ax+b=0对于任意x都成立关于x的方程ax+b=0有无数个解a=0且b=0。
(2)ax2+bx+c=0对于任意x都成立关于x的方程ax2+bx+c=0有无数解a=0、b=0、c=0。
13、恒不等成立的条件
由一元二次不等式解集为R的有关结论容易得到下列恒不等成立的条件:
14、平移规律
图像的平移规律是研究复杂函数的重要方法。平移规律是:
15、图像法
讨论函数性质的重要方法是图像法——看图像、得性质。
定义域图像在X轴上对应的部分
值域图像在Y轴上对应的部分
单调性从左向右看,连续上升的一段在X轴上对应的区间是增区间;从左向右看,连续下降的一段在X轴上对应的区间是减区间。
最值图像点处有值,图像最低点处有最小值
奇偶性关于Y轴对称是偶函数,关于原点对称是奇函数
16、函数、方程、不等式间的重要关系
方程的根
函数图像与x轴交点横坐标
不等式解集端点
17、一元二次不等式的解法
一元二次不等式可以用因式分解转化为二元一次不等式组去解,但比较复杂;它的简便的实用解法是根据“三个二次”间的关系,利用二次函数的图像去解。具体步骤如下:
二次化为正
判别且求根
画出示意图
解集横轴中
18、一元二次方程根的讨论
一元二次方程根的符号问题或m型问题可以利用根的判别式和根与系数的关系来解决,但根的一般问题、特别是区间根的问题要根据“三个二次”间的关系,利用二次函数的图像来解决。“图像法”解决一元二次方程根的问题的一般思路是:
题意
二次函数图像
不等式组
不等式组包括:a的符号;△的情况;对称轴的位置;区间端点函数值的符号。
19、基本函数在区间上的值域
我们学过的一次函数、反比例函数、二次函数等有名称的函数是基本函数。基本函数求值域或最值有两种情况:
(1)定义域没有特别限制时---记忆法或结论法;
(2)定义域有特别限制时---图像截断法,一般思路是:
画出图像
截出一断
得出结论
20、最值型应用题的解法
应用题中,涉及“一个变量取什么值时另一个变量取得值或最小值”的问题是最值型应用题。解决最值型应用题的基本思路是函数思想法,其解题步骤是:
设变量
列函数
求最值
写结论
21、穿线法
穿线法是解高次不等式和分式不等式的方法。其一般思路是:
首项化正
求根标根
右上起穿
奇穿偶回
注意:①高次不等式首先要用移项和因式分解的方法化为“左边乘积、右边是零”的形式。②分式不等式一般不能用两边都乘去分母的方法来解,要通过移项、通分合并、因式分解的方法化为“商零式”,用穿线法解。
高考数学常考题型答题技巧与方法有哪些相关 文章 :
1. 2019高考数学选择题万能答题技巧及方法
2. 高中数学常考题型答题技巧与方法及顺口溜
3. 高考数学必考题型以及题型分析
4. 高考数学选择题答题技巧有哪些
5. 2017高考数学常考的题型总结
6. 2017高考常考数学题型归纳
7. 高考数学答题技巧及复习方法
8. 高考数学不同题型的答题技巧
9. 高考数学的核心考点及答题技巧方法
高考数学选择题答题技巧
高考数学选择题答题技巧,内容如下:
1、直接法
当选择题是由计算题、应用题、证明题、判断题改编成的时,可直接按计算题、应用题、证明题、判断题来做,确定答案之后,从选项里找即可。
2、筛选法(排除法)
去伪存真,筛除一些较易判定的的、 不合题意的结论,以缩小选择的范围,再从其余的结论中求得正确的答案。如筛去不合题意的以后, 结论只有一个,则为应选项。
3、特殊值法
根据答案中所提供的信息,选择某些特殊情况进行分析,或某些特殊值进行计算,或将字母 参数换成具体数值代入,或将比例数看成具体数带人,总之,把一般形式变为特殊形式,再进行判断往往十分简单。
4、验证法(代入法)
将各选项逐个代入题干中,进行验证、或适当选取特殊值进行检验、或取其他验证手段,以判断选择支正误的方法。
5、图象法
可先根椐题意,作出草图,然后参照图形的作法、形状、位置、性质,综合图象的特征,得出结论。
6、试探法
综合性较强、选择对象比较多的试题,要想条理清楚,可以根据题意建立一个几何模型、代数构造,然后通过试探法来选择,并注意灵活地运用上述多种方法。
7、猜答(语感法)
选择题存在凭猜答得分的可能性,我们称为机遇分。
高考数学必考的题型:
1、函数与导数
主要考查集合运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。
2、平面向量与三角函数、三角变换及其应用
这一部分是高考的重点但不是难点,主要出一些基础题或中档题。
3、数列及其应用
这部分是高考的重点而且是难点,要出-些综合题。
4、不等式.
主要考查不等式的求解和证明,且很少单独考查,主要是在解答题中比较大小。高考的重点和难点。
5、概率和统计
这部分和我们的生活联系比较大,属应用题。
6、空间位置关系的定性与定份析
主要是证明平行或垂直,求角和距离。要考察对定理的熟悉程度、运用程度。
7、解析几何
考的难点,运算大,一般含参数。