您现在的位置是: 首页 > 教育比较 教育比较

2006重庆数学高考,2016重庆高考数学答案

tamoadmin 2024-06-09 人已围观

简介1.重庆2023高考数学难不难考2.2020高二数学暑假作业答案大全3.重庆高考数学是什么卷4.设a1=1,……重庆高考理科数学22题,201年的,有哪位数学大神在?求指点5.2012年重庆市高考数学理科 试卷第14题怎么做6.重庆高考用的是什么卷7.2022新高考全国一卷数学试卷及答案解析2023年重重庆高考数学试题其实并不是很难,其中选择题的难度也不是特别的大,要说花时间较长的选择题就是最后一

1.重庆2023高考数学难不难考

2.2020高二数学暑假作业答案大全

3.重庆高考数学是什么卷

4.设a1=1,……重庆高考理科数学22题,201年的,有哪位数学大神在?求指点

5.2012年重庆市高考数学理科 试卷第14题怎么做

6.重庆高考用的是什么卷

7.2022新高考全国一卷数学试卷及答案解析

2006重庆数学高考,2016重庆高考数学答案

2023年重重庆高考数学试题其实并不是很难,其中选择题的难度也不是特别的大,要说花时间较长的选择题就是最后一道选择题,可能计算量稍微大一些,但难度其实并不是很大。

教育部2023高考数学难度趋势:不会大幅提升,但也不会比2022年简单太多。

普通高等学校招生全国统一考试(Nationwide Unified Examination for Admissions to General Universities and Colleges),简称“高考”,是合格的高中毕业生或具有同等学历的考生参加的选拔性考试。

普通高等学校招生全国统一考试。教育部要求各省(区、市)考试科目名称与全国统考科目名称相同的必须与全国统考时间安排一致。参加考试的对象一般是全日制普通高中毕业生和具有同等学历的中华人民共和国公民。

招生分理工农医(含体育)、文史(含外语和艺术)两大类。普通高等学校根据考生成绩,按照招生章程计划陆耐和扩招,德智体美劳全面衡量,择优录取。2015年,高考逐步取消体育特长生、奥林匹克竞赛等6项加分乱友项目哗悉槐。

2016年,教育部严禁宣传“高考状元”、“高考升学率”,加强对中学高考标语的管理,坚决杜绝任何关于高考的炒作。2017年4月7日教育部、中国残联关于印发《残疾人参加普通高等学校招生全国统一考试管理规定》的通知。

考试注意事项:

1、开考信号发出后才能开始答题。

2、在考场内须保持安静,不得吸烟、不得喧哗,自觉遵守考试纪律。

3、考试中,不准交头接耳、左顾右盼、打手势、做暗号,不准偷看、抄袭或有意让他人抄袭,不准传抄答案或交换试卷、草稿纸,不得自行传递文具、用品等。

4、考生提问须先举手,得到允许后,可提问有关试卷字迹不清、卷面缺损、污染等问题。

重庆2023高考数学难不难考

根据我的经验,貌似江西的数学是最难的,他们的命题组长是搞竞赛的,他出的试卷秒杀了4届120W江西考生,他的题目让数学建模系统死机,让最后一题成为仅供观赏,最后一题平均得分0.31分。

2020高二数学暑假作业答案大全

重庆2023高考数学难不难如下:

2023重庆高考数学试题难度适中,重庆的考生结束数学考试后表示,今年的重庆高考数学试题难度还可以,难度在接受的范围内。

教育部2023高考数学难度趋势:

不会大幅提升,但也不会比2022年简单太多。

普通高等学校招生全国统一考试(Nationwide Unified Examination for Admissions to General Universities and Colleges),简称“高考”,是合格的高中毕业生或具有同等学历的考生参加的选拔性考试。

普通高等学校招生全国统一考试。教育部要求各省(区、市)考试科目名称与全国统考科目名称相同的必须与全国统考时间安排一致。参加考试的对象一般是全日制普通高中毕业生和具有同等学历的中华人民共和国公民。

招生分理工农医(含体育)、文史(含外语和艺术)两大类。普通高等学校根据考生成绩,按照招生章程计划陆耐和扩招,德智体美劳全面衡量,择优录取。2015年,高考逐步取消体育特长生、奥林匹克竞赛等6项加分乱友项目哗悉槐。

2016年,教育部严禁宣传“高考状元”、“高考升学率”,加强对中学高考标语的管理,坚决杜绝任何关于高考的炒作。2017年4月7日教育部、中国残联关于印发《残疾人参加普通高等学校招生全国统一考试管理规定》的通知。

考试注意事项:

1、开考信号发出后才能开始答题。

2、在考场内须保持安静,不得吸烟、不得喧哗,自觉遵守考试纪律。

3、考试中,不准交头接耳、左顾右盼、打手势、做暗号,不准偷看、抄袭或有意让他人抄袭,不准传抄答案或交换试卷、草稿纸,不得自行传递文具、用品等。

4、考生提问须先举手,得到允许后,可提问有关试卷字迹不清、卷面缺损、污染等问题。

重庆高考数学是什么卷

掌握基础知识,加深对一些数学公式和概念的理解。课后习题一定要认真做,那些题都是对每一个章节的知识点 由浅入深的一个引导和巩固。下面我整理2020 高二数学 暑假作业答案大全,欢迎阅读。

2020高二数学暑假作业答案大全1

1.(09年重庆高考)直线与圆的位置关系为()

A.相切B.相交但直线不过圆心

C.直线过圆心D.相离

2.方程x2+y2+2ax-by+c=0表示圆心为C(2,2),半径为2的圆,则a、b、c的值

依次为()

A.2、4、4;B.-2、4、4;

C.2、-4、4;D.2、-4、-4

3(2011年重庆高考)圆心在轴上,半径为1,且过点(1,2)的圆的方程为()

A.B.

C.D.

4.直线3x-4y-4=0被圆(x-3)2+y2=9截得的弦长为()

A.B.4

C.D.2

5.M(x0,y0)为圆x2+y2=a2(a>0)内异于圆心的一点,则直线x0x+y0y=a2与该圆的位置关系是()

A.相切B.相交

C.相离D.相切或相交

6、圆关于直线对称的圆的方程是().

A.

B.

C.

D.

7、两圆x2+y2-4x+6y=0和x2+y2-6x=0的连心线方程为().

A.x+y+3=0B.2x-y-5=0

C.3x-y-9=0D.4x-3y+7=0

8.过点的直线中,被截得最长弦所在的直线方程为()

A.B.

C.D.

9.(2011年四川高考)圆的圆心坐标是

10.圆和

的公共弦所在直线方程为____.

11.(2011年天津高考)已知圆的圆心是直线与轴的交点,且圆与直线相切,则圆的方程为.

12(2010山东高考)已知圆过点,且圆心在轴的正半轴上,直线被该圆所截得的弦长为,则圆的标准方程为____________

13.求过点P(6,-4)且被圆截得长为的弦所在的直线方程.

14、已知圆C的方程为x2+y2=4.

(1)直线l过点P(1,2),且与圆C交于A、B两点,若|AB|=23,求直线l的方程;

(2)圆C上一动点M(x0,y0),ON→=(0,y0),若向量OQ→=OM→+ON→,求动点Q的轨迹方程

"人"的结构就是相互支撑,"众"人的事业需要每个人的参与。

2020高二数学暑假作业答案大全2

1.点的内部,则的取值范围是()

A.B.

C.D.

2.(09年上海高考)点P(4,-2)与圆上任一点连续的中点轨迹方程是()

A.

B.

C.

D.

3.(09年陕西高考)过原点且倾斜角为的直线被圆所截得的弦长为

A.B.2C.D.2

4.已知方程x2+y2+4x-2y-4=0,则x2+y2的值是()

A.9B.14C.14-D.14+

5、(09年辽宁高考)已知圆C与直线x-y=0及x-y-4=0都相切,圆心在直线x+y=0上,则圆C的方程为()

A.

B.

C.

D.

6、两圆相交于两点(1,3)和(m,1),两圆的圆心都在直线x-y+c2=0上,则m+c的值是()

A.-1B.2C.3D.0

7.(2011安徽)若直线过圆的圆心,则a的值为()

A.1B.1C.3D.3

8.(09年广东高考)设圆C与圆x2+(y-3)2=1外切,与直线y=0相切,则C的圆心轨迹为()

A.抛物线B.双曲线

C.椭圆D.圆

9.(09年天津高考)若圆与圆的公共弦长为,则a=________.

10.(09年广东高考)以点(2,)为圆心且与直线相切的圆的方程是.

11.(09年陕西高考)过原点且倾斜角为的直线被圆所截得的弦长为.

12、过点P(-3,-32)且被圆x2+y2=25所截得的弦长为8的直线方程为__________.

13、已知圆C的圆心在直线l1:x-y-1=0上,与直线l2:4x+3y+14=0相切,且截得直线l3:3x+4y+10=0所得弦长为6,求圆C的方程.

2020高二数学暑假作业答案大全3

1、已知点P是抛物线y2=4x上的动点,那么点P到点A(-1,1)的距离与点P到直线x=-1距离之和最小值是。若B(3,2),则最小值是

2、过抛物线y2=2px(p>0)的焦点F,做倾斜角为的直线与抛物线交于两点,若线段AB的长为8,则p=

3、将两个顶点在抛物线上,另一个顶点是此抛物线焦点的正三角形个数记为n,则n=_________

4、在抛物线y=x2+ax-5(a≠0)上取横坐标为x1=-4,x2=2的两点,经过两点引一条割线,有平行于该割线的一条直线同时与该抛物线和圆相切,则抛物线的顶点坐标是_______

1.(本题满分12分)有6名同学站成一排,求:

(1)甲不站排头也不站排尾有多少种不同的排法:

(2)甲不站排头,且乙不站排尾有多少种不同的排法:

(3)甲、乙、丙不相邻有多少种不同的排法.

2.(12分)甲、乙两人参加一次 英语口语 考试,已知在编号为1~10的10道试题中,甲能答对编号为1~6的6道题,乙能答对编号为3~10的8道题,规定每位考生都从备选题中抽出3道试题进行测试,至少答对2道才算合格,

(1)求甲答对试题数的概率分布及数学期望;

(2)求甲、乙两人至少有一人考试合格的概率.

1.直线与圆的位置关系为()

A.相切B.相交但直线不过圆心

C.直线过圆心D.相离

2.方程x2+y2+2ax-by+c=0表示圆心为C(2,2),半径为2的圆,则a、b、c的值依次为()

A.2、4、4;B.-2、4、4;

C.2、-4、4;D.2、-4、-4

3圆心在轴上,半径为1,且过点(1,2)的圆的方程为()

4.直线3x-4y-4=0被圆(x-3)2+y2=9截得的弦长为()

5.M(x0,y0)为圆x2+y2=a2(a>0)内异于圆心的一点,则直线x0x+y0y=a2与该圆的位置关系是()

A.相切B.相交

C.相离D.相切或相交

2020高二数学暑假作业答案大全4

(一)选择题(每个题5分,共10小题,共50分)

1、抛物线上一点的纵坐标为4,则点与抛物线焦点的距离为()

A2B3C4D5

2、对于抛物线y2=2x上任意一点Q,点P(a,0)都满足|PQ|≥|a|,则a的取值范围是()

A(0,1)B(0,1)CD(-∞,0)

3、抛物线y2=4ax的焦点坐标是()

A(0,a)B(0,-a)C(a,0)D(-a,0)

4、设A(x1,y1),B(x2,y2)是抛物线y2=2px(p>0)上的两点,并且满足OA⊥OB.则y1y2等于

()

A–4p2B4p2C–2p2D2p2

5、已知点P在抛物线y2=4x上,那么点P到点Q(2,-1)的距离与点P到抛物线焦点距离之和取得最小值时,点P的坐标为()

A.(,-1)B.(,1)C.(1,2)D.(1,-2)

6、已知抛物线的焦点为,准线与轴的交点为,点在上且,则的面积为()

(A)(B)(C)(D)

7、直线y=x-3与抛物线交于A、B两点,过A、B两点向

抛物线的准线作垂线,垂足分别为P、Q,则梯形APQB的面积为()

(A)48.(B)56(C)64(D)72.

8、(2011年高考广东卷文科8)设圆C与圆外切,与直线相切.则C的圆心轨迹为()

A.抛物线B.双曲线C.椭圆D.圆

9、已知双曲线:的离心率为2.若抛物线的焦点到双曲线的渐近线的距离为2,则抛物线的方程为

(A)(B)(C)(D)

10、(2011年高考山东卷文科9)设M(,)为抛物线C:上一点,F为抛物线C的焦点,以F为圆心、为半径的圆和抛物线C的准线相交,则的取值范围是

(A)(0,2)(B)[0,2](C)(2,+∞)(D)[2,+∞)

(二)填空题:(每个题5分,共4小题,共20分)

11、已知点P是抛物线y2=4x上的动点,那么点P到点A(-1,1)的距离与点P到直线x=-1距离之和最小值是。若B(3,2),则最小值是

12、过抛物线y2=2px(p>0)的焦点F,做倾斜角为的直线与抛物线交于两点,若线段AB的长为8,则p=

13、将两个顶点在抛物线上,另一个顶点是此抛物线焦点的正三角形个数记为n,则n=_________

14、在抛物线y=x2+ax-5(a≠0)上取横坐标为x1=-4,x2=2的两点,经过两点引一条割线,有平行于该割线的一条直线同时与该抛物线和圆相切,则抛物线的顶点坐标是_______

(三)解答题:(15、16、17题每题12分,18题14分共计50分)

15、已知过抛物线的焦点,斜率为的直

线交抛物线于()两点,且.

(1)求该抛物线的方程;

(2)为坐标原点,为抛物线上一点,若,求的值.

16、(2011年高考福建卷文科18)(本小题满分12分)

如图,直线l:y=x+b与抛物线C:x2=4y相切于点A。

(1)求实数b的值;

(11)求以点A为圆心,且与抛物线C的准线相切的圆的方程.

17、河上有抛物线型拱桥,当水面距拱桥顶5米时,水面宽为8米,一小船宽4米,高2米,载货后船露出水面上的部分高0.75米,问水面上涨到与抛物线拱顶相距多少米时,小船开始不能通航?

18、(2010江西文)已知抛物线:经过椭圆:的两个焦点.

(1)求椭圆的离心率;

(2)设,又为与不在轴上的两个交点,若的重心在抛物线上,求和的方程.

专题三十一:直线与圆锥曲线

命题人:王业兴复核人:祝甜2012-7

一、复习教材

1、回扣教材:阅读教材选修1-1P31----P72或选修2-1P31----P76,及直线部分

2、掌握以下问题:

①直线与圆锥曲线的位置关系是,,。相交时有个交点,相切时有个交点,相离时有个交点。

②判断直线和圆锥曲线的位置关系,通常是将直线的方程代入圆锥曲线的方程,消去y(也可以消去x)得到一个关于变量x(或y)的一元方程,即,消去y得ax2+bx+c=0(此方程称为消元方程)。

当a0时,若有>0,直线和圆锥曲线.;<0,直线和圆锥曲线

当a=0时,得到的是一个一元一次方程则直线和圆锥曲线相交,且只有一个交点,此时,若是双曲线,则直线与双曲线的.平行;若是抛物线,则直线l与抛物线的.平行。

③连接圆锥曲线两个点的线段成为圆锥曲线的弦

设直线的方程,圆锥曲线的方程,直线与圆锥曲线的两个不同交点为,消去y得ax2+bx+c=0,则是它两个不等实根

(1)由根与系数的关系有

(2)设直线的斜率为k,A,B两点之间的距离|AB|==

若消去x,则A,B两点之间的距离|AB|=

④在给定的圆锥曲线中,求中点(m,n)的弦AB所在的直线方程时,通常有两种处理 方法 :(1)由根与系数的关系法:将直线方程代入圆锥曲线的方程,消元后得到一个一元二次方程,利用根与系数的关系和中点坐标公式建立等式求解。(2)点差法:若直线与圆锥曲线的两个不同的交点A,B,首先设出交点坐标代入曲线的方程,通过作差,构造出,从而建立中点坐标与斜率的关系。

⑤高考要求

直线与圆锥曲线联系在一起的综合题在高考中多以高档题、压轴题出现,主要涉及位置关系的判定,弦长问题、最值问题、对称问题、轨迹问题等突出考查了数形结合、分类讨论、函数与方程、等价转化等数学思想方法,要求考生分析问题和解决问题的能力、计算能力较高,起到了拉开考生“档次”,有利于选拔

直线与圆锥曲线有无公共点或有几个公共点的问题,实际上是研究它们的方程组成的方程组是否有实数解或实数解的个数问题,此时要注意用好分类讨论和数形结合的思想方法

当直线与圆锥曲线相交时涉及弦长问题,常用“韦达定理法”设而不求计算弦长(即应用弦长公式);涉及弦长的中点问题,常用“点差法”设而不求,将弦所在直线的斜率、弦的中点坐标联系起来,相互转化同时还应充分挖掘题目的隐含条件,寻找量与量间的关系灵活转化。

二、自测练习:自评(互评、他评)分数:______________家长签名:______________

(一)选择题(每个题5分,共10小题,共50分)

1、已知椭圆则以(1,1)为中点的弦的长度为()

(A)(B)(C)(D)

2、两条渐近线为x+2y=0,x-2y=0,则截直线x-y-3=0所得弦长为的双曲线方程为()

(A)(B)(C)(D)

3、双曲线,过点P(1,1)作直线m,使直线m与双曲线有且只有一个公共点,则满足上述条件的直线m共有()

(A)一条(B)两条(C)三条(D)四条

4、(10?辽宁)设抛物线y2=8x的焦点为F,准线为l,P为抛物线上一点,PA⊥l,A为垂足.如果直线AF的斜率为-3,那么|PF|=().

A.43B.8C.83D.16

5、过点M(-2,0)的直线l与椭圆x2+2y2=2交于P1,P2,线段P1P2的中点为P.设直线l的斜率为k1(k1≠0),直线OP的斜率为k2,则k1k2等于().

A.-12B.-2C.12D.2

6、已知抛物线C的方程为x2=12y,过点A(0,-1)和点B(t,3)的直线与抛物线C没有公共点,则实数t的取值范围是().

A.(-∞,-1)∪(1,+∞)B.-∞,-22∪22,+∞

C.(-∞,-22)∪(22,+∞)D.(-∞,-2)∪(2,+∞)

7、已知点F1,F2分别是双曲线x2a2-y2b2=1(a>0,b>0)的左、右焦点,过F1且垂直于x轴的直线与双曲线交于A,B两点,若△ABF2为正三角形,则该双曲线的离心率是().

A.2B.2C.3D.3

8、(12山东)已知椭圆C:的离心率为,双曲线x2-y2=1的渐近线与椭圆有四个交点,以这四个交点为顶点的四边形的面积为16,则椭圆c的方程为

9、若直线y=kx+2与双曲线x2-y2=6的右支交于不同的两点,则k的取值范围是()

A.-153,153B.0,153C.-153,0D.-153,-1

10、已知椭圆C:(a>b>0)的离心率为,过右焦点F且斜率为k(k>0)的直线于C相交于A、B两点,若。则k=

(A)1(B)(C)(D)2

(二)填空题(每个题5分,共4小题,共20分)

11、已知椭圆,椭圆上有不同的两点关于直线对称,则的取值范围是。

12、抛物线被直线截得的弦长为,则。

13、已知抛物线C的顶点坐标为原点,焦点在x轴上,直线y=x与抛物线C交于A,B两点,若为的中点,则抛物线C的方程为。

14、以下同个关于圆锥曲线的命题中

①设A、B为两个定点,k为非零常数,,则动点P的轨迹为双曲线;

②过定圆C上一定点A作圆的动弦AB,O为坐标原点,若则动点P的轨迹为椭圆;

③方程的两根可分别作为椭圆和双曲线的离心率;

④双曲线有相同的焦点.

其中真命题的序号为(写出所有真命题的序号)

(三)解答题(15、16、17题每题12分,18题14分,共50分)

15.在平面直角坐标系xOy中,经过点(0,2)且斜率为k的直线l与椭圆x22+y2=1有两个不同的交点P和Q.

(1)求k的取值范围;

(2)设椭圆与x轴正半轴、y轴正半轴的交点分别为A、B,是否存在常数k,使得向量OP→+OQ→与AB→共线?如果存在,求k值;如果不存在,请说明理由.

16.在直角坐标系xOy上取两个定点A1(-2,0),A2(2,0),再取两个动点N1(0,m),N2(0,n),且mn=3.

(1)求直线A1N1与A2N2交点的轨迹M的方程;

(2)已知点A(1,t)(t>0)是轨迹M上的定点,E,F是轨迹M上的两个动点,如果直线AE的斜率kAE与直线AF的斜率kAF满足kAE+kAF=0,试探究直线EF的斜率是否是定值?若是定值,求出这个定值,若不是,说明理由.

17.(09山东)设椭圆E:(a,b>0)过M,N两点,O为坐标原点,

(I)求椭圆E的方程;

(II)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且?若存在,写出该圆的方程,并求|AB|的取值范围,若不存在说明理由

18.(11山东)在平面直角坐标系中,已知椭圆.如图所示,斜率为且不过原点的直线交椭圆于,两点,线段的中点为,射线交椭圆于点,交直线于点.

(Ⅰ)求的最小值;

(Ⅱ)若?,

(i)求证:直线过定点;(ii)试问点,能否关于轴对称?若能,求出此时的外接圆方程;若不能,请说明理由.

2020高二数学暑假作业答案大全5

一、选择题

1.计算的结果等于()

A.B.C.D.

2.“”是“”的()

A.充分不必要条件.B.必要不充分条件.

C.充要条件.D.既不充分也不必要条件

3.在△ABC中,C=120°,tanA+tanB=23,则tanA?tanB的值为()

A.14B.13C.12D.53

4.已知,(0,π),则=()

A.1B.C.D.1

5.已知则等于()

A.B.C.D.

6.[2012?重庆卷]sin47°-sin17°cos30°cos17°=()

A.B.-12C.12D.

7.设是方程的两个根,则的值为()

A.B.C.1D.3

8.()

A.B.C.D.

二、填空题

9.函数的值为;

10.=;

11.设,利用三角变换,估计在k=l,2,3时的取值情况,对k∈N_时猜想的值域为(结果用k表示).

12.已知角的顶点在坐标原点,始边与x轴的正半轴重合,角的终边与单位圆交点的横坐标是,角的终边与单位圆交点的纵坐标是,则=.

三、解答题

13.某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数:

(1)sin213°+cos217°-sin13°cos17°;

(2)sin215°+cos215°-sin15°cos15°;

(3)sin218°+cos212°-sin18°cos12°;

(4)sin2(-18°)+cos248°-sin(-18°)cos48°;

(5)sin2(-25°)+cos255°-sin(-25°)cos55°.

(1)试从上述五个式子中选择一个,求出这个常数;

(2)根据(1)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论.

14.已知函数

(1)求函数f(x)的最小正周期;

(2)若的值.

15.已知在△ABC中,sinA(sinB+cosB)-sinC=0,sinB+cos2C=0,求角A、B、C的大小.

16.已知,,,

(1)求的值;(2)求的值.

链接高考设α为锐角,若cos=45,则sin的值为________.

答案

1~8BABADCAC;9.;10.;11.;12.;

13.(2)三角恒等式为sin2α+cos2(30°-α)-sinαcos(30°-a)=34.

证明如下:sin2α+cos2(30°-α)-sinαcos(30°-α)

=sin2α+(cos30°cosα+sin30°sinα)2-sinα(cos30°cosα+sin30°sinα)

=sin2α+34cos2α+sinαcosα+14sin2α-sinαcosα-12sin2α=34sin2α+34cos2α=34.

14.(1);(2);15.

16.(1);(2);

2020高二数学暑假作业答案大全6

1?1变化率与导数

1.1.1变化率问题

1.D2.D3.C4.-3Δt-65.Δx+26.3?31

7.(1)0?1(2)0?21(3)2?18.11m/s,10?1m/s9.25+3Δt10.128a+64a2t11.f(Δx)-f(0)Δx=1+Δx(Δx>0),

-1-Δx(Δx<0)

1?1?2导数的概念

1.D2.C3.C4.-15.x0,Δx;x06.67.a=18.a=2

9.-4

10.(1)2t-6(2)初速度为v0=-6,初始位置为x0=1(3)在开始运动后3s,在原点向左8m处改变(4)x=1,v=6

11.水面上升的速度为0?16m/min.提示:Δv=Δh75+15Δh+(Δh)23,

则ΔvΔt=ΔhΔt×75+15Δh+(Δh)23,即limΔt→0ΔvΔt=limΔt→0ΔhΔt×75+15Δh+(Δh)23=limΔt→0ΔhΔt×25,

即v′(t)=25h′(t),所以h′(t)=125×4=0?16(m/min)

1?1?3导数的几何意义(一)

1.C2.B3.B4.f(x)在x0处切线的斜率,y-f(x0)=f′(x0)(x-x0)

5.36.135°7.割线的斜率为3?31,切线的斜率为38.k=-1,x+y+2=0

9.2x-y+4=010.k=14,切点坐标为12,12

11.有两个交点,交点坐标为(1,1),(-2,-8)

1?1?3导数的几何意义(二)

1.C2.A3.B4.y=x+15.±16.37.y=4x-18.1039.19

10.a=3,b=-11,c=9.提示:先求出a,b,c三者之间的关系,即c=3+2a,

b=-3a-2,再求在点(2,-1)处的斜率,得k=a-2=1,即a=3

11.(1)y=-13x-229(2)12512

1?2导数的计算

1?2?1几个常用函数的导数

1.C2.D3.C4.12,05.45°6.S=πr2

7.(1)y=x-14(2)y=-x-148.x0=-3366

9.y=12x+12,y=16x+32.提示:注意点P(3,2)不在曲线上10.证明略,面积为常数2

11.提示:由图可知,点P在x轴下方的图象上,所以y=-2x,则y′=-1x,令y′=-12,得x=4,故P(4,-4)

1?2?2基本初等函数的导数公式及导数的运算法则(一)

1.A2.A3.C4.35.2lg2+2lge6.100!

7.(1)1cos2x(2)2(1-x)2(3)2excosx8.x0=0或x0=2±2

9.(1)π4,π2(2)y=x-11

10.k=2或k=-14.提示:设切点为P(x0,x30-3x20+2x0),则斜率为k=3x20-6x0+2,切线方程为y-(x30-3x20+2x0)=(3x20-6x0+2)(x-x0),因切线过原点,整理后常数项为零,即2x30-3x20=0,得x0=0或x0=32,代入k=3x20-6x0+2,得k=2,或k=-14

11.提示:设C1的切点为P(x1,x21+2x1),则切线方程为:y=(2x1+2)x-x21;设C2的切点为Q(x2-x22+a),则切线方程为:y=-2x2x+x22+a.又因为l是过点P,Q的公切线,所以x1+1=-x2,

-x21=x22+a,消去x2得方程2x21+2x1+1+a=0,因为C1和C2有且仅有一条公切线,所以有Δ=0,解得a=-12,此时切线方程为y=x-14

2基本初等函数的导数公式及导数的运算法则(二)

1.D2.A3.C4.50x(2+5x)9-(2+5x)10x25.336.97.a=1

8.y=2x-4,或y=2x+69.π6

10.y′=x2+6x+62x(x+2)(x+3).提示:y=lnx(x+2)x+3=12[lnx+ln(x+2)-ln(x+3)]

11.a=2,b=-5,c=2,d=-12

1?3导数在研究函数中的应用

1?3?1函数的单调性与导数

1.A2.B3.C4.33,+∞5.单调递减6.①②③

7.函数在(1,+∞),(-∞,-1)上单调递增,在(-1,0),(0,1)上单调递减

8.在区间(6,+∞),(-∞,-2)上单调递增,在(-2,6)上单调递减9.a≤-3

10.a<0,递增区间为:--13a,-13a,递减区间为:-∞,--13a,-13a,+∞

11.f′(x)=x2+2ax-3a2,当a<0时,f(x)的递减区间是(a,-3a);当a=0时,f(x)不存在递减区间;当a>0时,f(x)的递减区间是(-3a,a)

1?3?2函数的极值与导数

1.B2.B3.A4.55.06.4e27.无极值

8.极大值为f-13=a+527,极小值为f(1)=a-1

9.(1)f(x)=13x3+12x2-2x(2)递增区间:(-∞,-2),(1,+∞),递减区间:(-2,1)

10.a=0,b=-3,c=2

11.依题意有1+a+b+c=-2,

3+2a+b=0,解得a=c,

b=-2c-3,从而f′(x)=3x2+2cx-(2c+3)=(3x+2c+3)·(x-1).令f′(x)=0,得x=1或x=-2c+33

①若-2c+33<1,即c>-3,f(x)的单调区间为-∞,-2c+33,[1,+∞);单调减区间为-2c+33,1

②若-2c+33>1,即c<-3,f(x)的单调增区间为(-∞,1],-2c+33,+∞;单调减区间为1,-2c+33

1?3?3函数的(小)值与导数

1.B2.C3.A4.x>sinx5.06.[-4,-3]7.最小值为-2,值为1

8.a=-29.(1)a=2,b=-12,c=0(2)值是f(3)=18,最小值是f(2)=-82

10.值为ln2-14,最小值为0

11.(1)h(t)=-t3+t-1(2)m>1.提示:令g(t)=h(t)-(-2t+m)=-t3+3t-1-m,则当t∈(0,2)时,函数g(t)<0恒成立,即函数g(t)的值小于0即可

1?4生活中的优化问题举例(一)

1.B2.C3.D4.32m,16m5.40km/h6.1760元7.115元

8.当q=84时,利润9.2

10.(1)y=kx-12+2000(x-9)(14≤x≤18)(2)当商品价格降低到每件18元时,收益

11.供水站建在A,D之间距甲厂20km处,可使铺设水管的费用最省

1?4生活中的优化问题举例(二)

1.D2.B3.D4.边长为S的正方形5.36.10,196007.2ab

8.4cm

9.当弯成圆的一段长为x=100ππ+4cm时,面积之和最小.

提示:设弯成圆的一段长为x,另一段长为100-x,正方形与圆的面积之和为S,则S=πx2π2+100-x42(0

10.h=S43,b=2S42711.33a

2020高二数学暑假作业答案大全相关 文章 :

★ 2020部编版高一年级下学期数学暑假作业答案大全

★ 2020高二数学题合集

★ 2020经典高二数学题

★ 2020高二数学教案精选

★ 2020高二数学题期末

★ 2020高二暑假计划精选文本800字大全

★ 2020优秀高二暑假计划范本1000字大全

★ 2020高二数学教案设计

★ 2020高中生暑假的学习计划

★ 2020高二数学知识点总结

设a1=1,……重庆高考理科数学22题,201年的,有哪位数学大神在?求指点

2023重庆高考数学是新高考全国二卷。

1、新高考二卷数学的内涵:

新高考二卷数学是指在中国高考中使用的数学试卷之一。它与传统的一卷数学试卷相比,难度有所提升,内容更加广泛。新高考二卷数学考查学生对于基础数学知识的掌握情况,同时也考察学生运用所学知识解决实际问题的能力。

2、新高考二卷数学的的内容:

包括函数代数、解析几何、概率统计等。考试时,学生需要掌握这些知识点,并能够灵活运用所学知识解决实际问题。

3、新高考二卷难度:

新高考一卷二卷都是由教育部依据同一份考试大纲命制的,两份试卷的试题结构基本相同,区别不大。论难度,新高考二卷相对于一卷来说稍微容易一些。

重庆高考注意事项:

1、高考考生进入考场时,只允许携带必要的文具。

如钢笔、铅笔、圆珠笔、圆规、尺子、量角器、橡胶和指定型号的计算器。不允许携带任何书籍、笔记本、报纸、草稿纸、修正液、手机、电脑和其他通信工具。

2、高考考生在每个科目前15分钟进入考场。

外语科目必须提前30分钟进入考场,带着准考证入座,并将准考证和身份证放在课桌左上角备查。考试铃响之前,不能开始回答问题。

3、迟到15分钟的考生不得参加考试。

4、高考考生在回答问题时不得使用铅笔。

笔迹应整齐、清晰,并应书写在试卷的指定位置。

5、高考考生不得写与答案无关的标记。

在试卷指定的位置填写自己的姓名、录取卡号和验证码,否则试卷无效。

6、高考考生在考场必须保持安静。

在考试时不准吸烟。交完试卷后,不得在考场附近逗留或谈话。

2012年重庆市高考数学理科 试卷第14题怎么做

这个题考查数列递推式,考查数列的通项,考查数学归纳法,考查学生分析解决问题的能力,难度也不小,虽然题目不长,但是考查的知识点挺多,挺全面。又放在了试卷后面。下面是答案,仔细琢磨下,相信你就明白了。

这里就是答案,an+1=根号{(an)^2?2an+2+b}(n∈N*)

(Ⅰ)若b=1,求a2,a3及数列{an}的通项公式;

(Ⅱ)若b=-1,问:是否存在实数c使得a2n<c<a2n+1对所有的n∈N*成立,证明你的结论

重庆高考用的是什么卷

14?5分?2012?重庆?过抛物线y2=2x的焦点F作直线交抛物线于A?B两点?若 ?则|AF|= ? 考点? 抛物线的简单性质。

分析? 设出点的坐标与直线的方程?利用抛物线的定义表示出|AF|、|BF|再联立直线与抛物线的方程利用根与系数的关系解决问题?即可得到答案? 解答? 解?由题意可得?F 0?设A?x1?y1?B?x2?y2? 因为过抛物线y2=2x的焦点F作直线l交抛物线于A、B两点? 所以|AF|= +x1?|BF|= +x2? 因为 ?所以x1+x2= 设直线l的方程为y=k?x?联立直线与抛物线的方程可得?k2x2?k2+2?x+ =0? 所以x1+x2=? ∴ ∴k2=24 ∴24x2?26x+6=0? ∴ ? ∴|AF|= +x1= 故答案为? 5/6

2022新高考全国一卷数学试卷及答案解析

2023年重庆高考启用的是新高考全国II卷。

2023年重庆高考启用的是新高考全国II卷,实施“3+1+2”新高考模式。采用新高考全国II卷的地区:辽宁、重庆、海南(3省市)。2023重庆高考是新高考全国二卷。重庆采取3+1+2新高考模式,其中3为语文、数学、外语,采用新高考全国二卷;1为物理/历史二选一。

2为从化学、生物、政治、地理中四选二,后3门均为本市自命题。重庆市普通高校招生统一考试(以下简称统一高考)实行“3+1+2”模式。“3”指全国统一考试语文、数学、外语(含听力,下同)3科;“1”指普通高中学业水平选择性考试首选科目1科。

“2”指普通高中学业水平选择性考试再选科目2科。在重庆市普通高中学业水平选择性考试中,物理、历史为首选科目,考生只能且必须选择其中1科报考;思想政治、地理、化学、生物学4科为再选科目,考生只能且必须选择其中2科报考。

重庆新高考考生文化课总成绩满分为750分。其中,“3”即语文、数学、外语3门统一高考科目,不再分文理科,试卷为全国统一命题,每门满分为150分。“1”和“2”为学业水平考试中的选择性科目,试卷由自治区统一命题。

“1”是考生在物理或者历史科目中选择其中1门作为首选科目,每门满分为100分,以卷面原始分计入高考文化课总成绩。“2”是考生在思想政治、地理、化学、生物学4门科目中选择2门作为再选科目,每门满分为100分,按等级转换分数计入高考文化课总成绩。

为了帮助大家全面了解2022年新高考全国一卷数学卷,以下是我整理的2022新高考全国一卷数学试卷及答案解析参考,欢迎大家借鉴与参考!

2022新高考全国一卷数学试卷

2022新高考全国一卷数学试卷答案解析参考

高考怎样填志愿

1、选择哪个学校

填报的几个志愿中要注意梯度,尤其是分数正好卡线的同学。不要一味追求名校,将所有志愿都选择同一层次的学校,更忌全部志愿扎堆名校。

2、选择什么专业

选择专业最主要的是结合自己的兴趣和基础,或者 毕业 后想从事的工作有特殊要求的专业,比如想当医生,就要选择相对应的专业。

3、提前了解各个学校的情况

在填报志愿之前,提前将各个学校的简章和招生计划等一系列的情况了解清楚,看自己的情况是否与该校复合,这样才能更好的去填写志愿。

服从调剂意味着什么

1、增加了一次录取机会

在平行志愿投档录取模式下,实行“排位优先,一轮投档”,每个考生只有一次被投档的机会。

如果考生所填报的专业志愿都未能被录取,选择服从专业调剂则可能被调至院校专业组内还没有录取满额的专业。而如果考生不服从专业调剂,那么一旦被退档,只能等待补录,或参加高职自招。

2、服从调剂,不一定会被调剂到其他专业

从录取的稳妥性上来说,服从专业调剂对于考生是利大于弊的。并不是说选择了专业调剂,就不会被所填报的专业录取,直接被调剂到其他专业。

如果考生的分数足够进入所填报专业时,就会被录取到所填报专业,服从专业调剂就没有派上用场。只有当考生所报专业全都录取额满,才会进入调剂程序。

3、专业调剂会调到哪里去?

专业服从调剂,是指在所填报的院校专业组内进行调剂。一般情况下,专业服从的范围是,考生当年填报的招生院校专业组,在本次招生计划录取中未满额的专业。

高考之后可以去哪玩

1、云南

云南是一个温和的城市,也是许多人向往的地方。可以在丽江感受古城魅力、在大理感受风花雪月、在香格里拉体验 传说 中的女儿国,一个四季如春的地方很适合放松心情。

云南香格里拉,感受真正的大自然。香格里拉的自然景色是雪山、冰川、峡谷、森林、草甸、湖泊、美丽、明朗、安然、闲逸、悠远、知足、宁静、和谐,是人们美好理想的归宿。在7月到8月间,避开如涌的人群,把自己放逐在自然,听风的呼唤,听鸟的鸣叫,听流水的声音,聆听自己的心声,这是真正的香格里拉。

2、杭州

“上有天堂,下有苏杭”,杭州是我国宜居城市之一,到西湖边上走一走,品尝东坡肉、干炸响铃、西湖醋鱼……

3、重庆

说到重庆就会想到“山城”,说起来重庆也是一个神奇的城市,你以为你在以为你在地面,其实你在地下。到重庆看穿越房屋的轻轨、看斑斓的城市,还能吃上麻辣辣的火锅。

4、厦门

厦门是一个小资城市,尤其是鼓浪屿,充满文艺气息,也适合情侣度假。而且因为靠海,厦门还有非常多便宜又好吃的海鲜

5、西藏

西藏是一个神圣又神秘的地方,如果有机会,人生中一定要去一次。到布达拉宫、纳木错体验纯净的心灵,到珠穆朗玛峰挑战高峰,即使是高原反应也是值得留念的体验。

6、九寨沟

九寨沟以绝天下的原始、神秘而闻名。自然景色兼有湖泊、瀑布、雪山、森林之美,有“童话世界”的美誉。这时雪峰玉立,青山流水,交相辉映。这时的瀑布、溪流更是迷人,如飞珠撒玉,异常雄伟秀丽。其中有千年古木,奇花异草,四时变化,色彩纷呈,倒影斑斓,气象万千,是夏季消暑的理想之地。

7、桂林

“桂林山水甲天下”夸的就是桂林的漓江山水。漓江两岸风景如画,当你泛着竹排漫游漓江时,肯定会感觉自己置身于360的泼墨山水中,好山好水目不暇接。另外,桂林的阳朔可是一个魅力十足的旅游 热点 。在阳朔上至七八十的老人,下至七八岁的小孩都或多或少能说上几句流利的英语,要不是周围的建筑风格提醒你这是中国境内,没准你还以为自己魂游到哪个“鬼”地方了呢。西街的氛围有点像北京的三里屯,那里的酒吧融合了中西两种 文化 的精华,在西街呆着就算不喝酒只喝茶,也能体会什么叫享受。

2022新高考全国一卷数学试卷及答案解析相关 文章 :

★ 2022高考北京卷数学真题及答案解析

★ 2022高考全国乙卷试题及答案(理科)

★ 2022全国甲卷高考数学文科试卷及答案解析

★ 2022高考甲卷数学真题试卷及答案

★ 2022年北京高考数学试卷

★ 2022高考全国甲卷数学试题及答案

★ 2022全国新高考I卷语文试题及答案

★ 2022全国新高考Ⅰ卷英语试题及答案解析

★ 2022年全国新高考II卷数学真题及答案

★ 2022北京卷高考文科数学试题及答案解析

文章标签: # 高考 # 直线 # 抛物线