您现在的位置是: 首页 > 教育分析 教育分析

数学高考常用结论_高考小题数学结论

tamoadmin 2024-05-15 人已围观

简介2022年高考数学知识点归纳 总结 你知道吗?高中数学在学习的过程中,有很多知识点常考点。一起来看看2022年高考数学知识点归纳总结,欢迎查阅! 高考数学的答题顺序是什么 高考数学的答题顺序:先易后难 就是先做简单题,再做综合题,应根据自己的实际,果断跳过啃不动的题目,从易到难,也要注意认真对待每一道题,力求有效,不能走马观花,有难就退,伤害解题情绪。 高考数学的答题顺序

数学高考常用结论_高考小题数学结论

2022年高考数学知识点归纳 总结 你知道吗?高中数学在学习的过程中,有很多知识点常考点。一起来看看2022年高考数学知识点归纳总结,欢迎查阅!

高考数学的答题顺序是什么

高考数学的答题顺序:先易后难

就是先做简单题,再做综合题,应根据自己的实际,果断跳过啃不动的题目,从易到难,也要注意认真对待每一道题,力求有效,不能走马观花,有难就退,伤害解题情绪。

高考数学的答题顺序:先熟后生

通览全卷,可以得到许多有利的积极因素,也会看到一些不利之处,对后者,不要惊慌失措,应想到试题偏难对所有考生也难,通过这种暗示,确保情绪稳定,对全卷整体把握之后,就可实施先熟后生的 方法 ,即先做那些内容掌握比较到家、题型结构比较熟悉、解题思路比较清晰的题目。这样,在拿下熟题的同时,可以使思维流畅、超常发挥,达到拿下中高档题目的目的。

高考数学的答题顺序:先同后异

先做同科同类型的题目,思考比较集中,知识和方法的沟通比较容易,有利于提高单位时间的效益。高考题一般要求较快地进行“兴奋灶”的转移,而“先同后异”,可以避免“兴奋灶”过急、过频的跳跃,从而减轻大脑负担,保持有效精力。

点击查看:高中数学知识点总结及复习资料

高考数学的答题顺序:先小后大

小题一般是信息量少、运算量小,易于把握,不要轻易放过,应争取在大题之前尽快解决,从而为解决大题赢得时间,创造一个宽松的心理基矗

高考数学的答题顺序:先点后面

近年的高考数学解答题多呈现为多问渐难式的“梯度题”,解答时不必一气审到底,应走一步解决一步,而前面问题的解决又为后面问题准备了思维基础和解题条件,所以要步步为营,由点到面6.先高后低。即在考试的后半段时间,要注重时间效益,如估计两题都会做,则先做高分题;估计两题都不易,则先就高分题实施“分段得分”,以增加在时间不足前提下的得分。

高考数学知识点归纳总结

复习忌讳一

一忌“多而不精,顾此失彼”

许多同学(更多的是家长)为了在高考中领先于 其它 人,总是绞尽脑汁想方设法要比别人学得多,这无疑是件好事。但他们最后所采用的方法却往往是对他们最为不利的,那就是:购买和选择大量的复习资料和讲义,花去比别人多得多的时间,没日没夜的做,他们的精神非常可贵,他们的毅力非常惊人,其效果却让他们自己都非常伤心失望。有些家长甚至说:“我的小孩已经尽力了,还是没有进步,一定是太笨了”。其实,他们犯了很多科学性的错误,却不自知。

1.高中阶段所学的知识具有一定的范围,再多的复习资料、讲义,也只不过是这一范围内的知识的重复和变形。你所做的很多题目都代表相同的知识点,代表相同的方法,对于那些你已经掌握的`知识、方法,做再多的题目还是于事无补,简单无聊的重复除了使你身陷题海,不能自拔,耗尽了你的精力不算,还使你失去了信心,因为你比别人努力,却没有得到相应的回报。

2.每一套复习资料都经过编纂人员的反复推敲,仔细研究,都很系统地将相应的知识点按照一定的规律和方法融会于其中。所以同学只要研究好一两套具有代表性的复习资料,你该学的一定都能学到,该会的都能学会。

3.“丢了西瓜,捡了芝麻”的 故事 告诉我们,不能太贪心,这本资料也好,那本资料也不错,好的资料太多了,同学们的精力是有限的,而题目是无限的,以有限的精力去做无限的题目,永远没有尽头,必然导致你对每一套资料都没有很好的完成,都没有系统地研究,反而会因为各种资料的风格、体系的不同,而使你的学习失去全面性、系统性,多而不精,顾此失彼,是高三复习的大敌。

复习忌讳二

二忌“学而不思,囫囵吞枣”

导致很多同学身陷题海,不能自拔的另一个重要原因,就是“学而不思”,题目是知识的载体,有的同学做了很多题目,却仍然没有明白它们代表同一知识点,不但不能举一反三,甚至举三不能反一,其真正的原因,是他们没有养成思考、总结的习惯。华罗庚先生说过:“譬如我们读一本书,厚厚的一本,再加上我们自己的注解,就愈读愈厚,我们自己知道的东西也就‘由薄到厚’了”。“‘学’并不到此为止,‘懂’并不到此为透,所谓由厚到薄是消化提炼的过程,即把那些学到的东西,经过咀嚼、消化,融会贯通,提炼出关键性的东西来。”这段话充分说明了思考在学习过程中的重要性。以下是“学而不思”的几种具体表现,也许你就有过这样的经历。

1.上课以为自己听懂了,可你仍然作业不会做,去问老师的时候,老师告诉你,这就是上课讲的例题或例题的变形;总是感到有做不完的题目,觉得每个题目都很新鲜,常常遇到那种好象从未见过的题型;

2.从来不去想,怎样发展自己的强项,怎样弥补自己的不足,只知道老师叫干什么就干什么,布置了作业就做,发了试卷就考。

3.考试的时候突然觉得这就是老师讲的某个典型的东西,却有那种话到嘴边说不出的感觉,或者豁然开朗、猛然醒悟的感觉;

4.当老师要你总结一类题目的解题方法和策略或要你总结某一章所学内容的时候,你总是支支唔唔无话可说;

5.一个自己所犯的错误,只是轻轻的告诉自己,下次要注意,只简单地归结为粗心,但下次还是犯同样的错误。

学而不思,往往就囫囵吞枣,对于外界的东西,来者不拒,只知接受,不会挑选,只知记忆,不会总结。你没有在学习过程中“加入自己的注解”,怎能做到华罗庚先生说的“由薄到厚”,你不会“提炼出关键性的东西来”,就更不能“由厚到薄”,找到问题地本质,那么,你的学习就很难取得质的飞跃。

复习忌讳三

三忌“好高骛远,忽视双基”

很多同学都知道好高务远就是眼高手低、不自量力的代名词,但却不知道什么是好高骛远。

有的同学由于自己觉得成绩很好,所以,总认为基础的东西,太简单,研究双基是浪费时间;有的同学对自己的定位较高,认为自己研究的应该是那些高于其它同学的,别人觉得有困难的东西;有的同学总是嫌老师讲得太简单或者太慢,甚至有的同学成绩不怎么样,也瞧不起基础的东西。其实,这些都是好高骛远。

最深刻的道理,往往存在于最简单的事实之中。一切高楼大厦都是平地而起的,一切高深的理论,都是由基础理论总结出来的。同学们可以仔细地分析老师讲的课,无论是多难的题目,最后总是深入浅出,归结到课本上的知识点,无论是多简单的题目,总能指出其中所蕴藏的科学道理,而大多数同学,只听到老师讲的是题目,常常认为此题已懂,不需要再听,而忽略了老师阐述“来自基础,回归基础”的道理的关键地方。所以大家一定要重视双基,千万别好高务远。

四忌“敷衍了事,得过且过”

以下是对某校2020届高三300名同学关于作业问题的两项调查:(数值为人数比例:做到的/总人数)

你做作业是为了什么?

检测自己究竟学会了没有占91/30.33%

因为老师要检查占143/47.67%

怕被家长、老师批评的占38/12.67%

说不清什么原因占28/9.33%

你的作业是怎样完成的?

复习,再联系课上内容独立完成占55/18.33%

高中 高三数学 的知识点归纳

一、直线与圆:

1、直线的倾斜角 的范围是

在平面直角坐标系中,对于一条与 轴相交的直线 ,如果把 轴绕着交点按逆时针方向转到和直线 重合时所转的最小正角记为, 就叫做直线的倾斜角。当直线 与 轴重合或平行时,规定倾斜角为0;

2、斜率:已知直线的倾斜角为,且90,则斜率k=tan.

过两点(x1,y1),(x2,y2)的直线的斜率k=( y2-y1)/(x2-x1),另外切线的斜率用求导的方法。

3、直线方程:⑴点斜式:直线过点 斜率为 ,则直线方程为 ,

⑵斜截式:直线在 轴上的截距为 和斜率,则直线方程为

4、 , ,① ∥ , ; ② .

直线 与直线 的位置关系:

(1)平行 A1/A2=B1/B2 注意检验(2)垂直 A1A2+B1B2=0

5、点 到直线 的距离公式 ;

两条平行线 与 的距离是

6、圆的标准方程: .⑵圆的一般方程:

注意能将标准方程化为一般方程

7、过圆外一点作圆的切线,一定有两条,如果只求出了一条,那么另外一条就是与轴垂直的直线.

8、直线与圆的位置关系,通常转化为圆心距与半径的关系,或者利用垂径定理,构造直角三角形解决弦长问题.① 相离② 相切③ 相交

9、解决直线与圆的关系问题时,要充分发挥圆的`平面几何性质的作用(如半径、半弦长、弦心距构成直角三角形) 直线与圆相交所得弦长

二、圆锥曲线方程:

1、椭圆: ①方程 (a0)注意还有一个;②定义: |PF1|+|PF2|=2a ③ e= ④长轴长为2a,短轴长为2b,焦距为2c; a2=b2+c2 ;

2、双曲线:①方程 (a,b0) 注意还有一个;②定义: ||PF1|-|PF2||=2a ③e= ;④实轴长为2a,虚轴长为2b,焦距为2c;渐进线 或 c2=a2+b2

3、抛物线 :①方程y2=2px注意还有三个,能区别开口方向; ②定义:|PF|=d焦点F( ,0),准线x=- ;③焦半径 ; 焦点弦=x1+x2+p;

4、直线被圆锥曲线截得的弦长公式:

5、注意解析几何与向量结合问题:1、 , . (1) ;(2) .

2、数量积的定义:已知两个非零向量a和b,它们的夹角为,则数量|a||b|cos叫做a与b的数量积,记作ab,即

3、模的计算:|a|= . 算模可以先算向量的平方

在上面 文章 中,我们学大专家已经为大家带来了,高三数学知识点。只要你能够把这些难点知识学习牢固,就可以在高考轻松取得数学高分。

2022年高考数学知识点归纳总结相关文章:

★ 2022高考数学应考策略

★ 高三数学知识点归纳整理

★ 2022高三数学复习方法

★ 2022高考数学选择题答题方法

★ 2022年高考复习方法技巧

★ 2022高考政治必背知识重点归纳

★ 2022年高三第二轮复习经验方法总结

★ 2022高考复习计划大全5篇

★ 2022高考物理必考知识点总结

一般来说,高考数学压轴题是为了拉开考生之间的差距准备的,但是掌握方法,也能让你很好的答对高考的压轴题哦。下面是我分享的高考数学压轴题的解题方法,一起来看看吧。

高考数学压轴题的解题方法

 正确认识压轴题

 压轴题主要出在函式,解几,数列三部分内容,一般有三小题。记住:第一小题是容易题!争取做对!第二小题是中难题,争取拿分!第三小题是整张试卷中最难的题目!也争取拿分!

其实对于所有认真复习迎考的同学来说,都有能力与实力在压轴题上拿到一半左右的分数,要获取这一半左右的分数,不需要大量针对性训练,也不需要复杂艰深的思考,只需要你有正确的心态!信心很重要,勇气不可少。同学们记住:心理素质高者胜!

 化繁为简,能做多少算多少

 如果遇到一个很困难的问题,确实啃不动,一个聪明的解题策略是,将它们分解为一系列的步骤,或者是一个个小问题,先解决问题的一部分,能解决多少就解决多少,能演算几步就写几步,尚未成功不等于失败。特别是那些解题层次明显的题目,或者是已经程式化了的方法,每进行一步得分点的演算都可以得分,最后结论虽然未得出,但分数却已过半,因为判卷是不只看结果的。

 重视审题

 你的心态就是珍惜题目中给你的条件。数学题目中的条件都是不多也不少的,一道给出的题目,不会有用不到的条件,而另一方面,你要相信给出的条件一定是可以做到正确答案的。所以,解题时,一切都必须从题目条件出发,只有这样,一切才都有可能。

 小窍门

 一道大题中第一题的答案是下一题的条件。很多同学在做压轴题时都忽略了一个重要条件,就是第一小题的答案。一般第一小题很简单,第二题很难,有的同学忽略了第一题答案可以作为下一题条件这个重要因素,所以耗时很久也解答不出来。建议考生罗列题目给出的条件时,一定要把第一小题的答案也考虑进去。当然,不是每个压轴大题都是这样的,也有很多压轴题的不同小题给出不同条件,希望考生们能够根据实际情况随机应变。

 退步解答

 “以退求进”是一个重要的解题策略。对于一个较一般的问题,如果你一时不能解决所提出的问题,那么,你可以从一般退到特殊,从抽象退到具体,从复杂退到简单,从整体退到部分,从参变数退到常量,从较强的结论退到较弱的结论。总之,退到一个你能够解决的问题,通过对“特殊”的思考与解决,启发思维,达到对“一般”的解决。

 平常心,不要紧张

 做题时心态是非常重要的,有的同学解答不出来时容易烦躁、紧张、出冷汗或者自暴自弃,这在高考中是最忌讳的。如果时间充足,建议同学们在压轴题上训练自己的心态,即使做不出来也要冷静、淡定,另外要注意好时间的控制。

 做压轴题的最高境界是没有难易之分,只有根据题目条件推理出新条件,最终获取结论的做题流程。如果解答不出就果断放弃,能够解答到哪里就解答到哪里,老师会根据得分点来给分的。

 高考数学解答题的解题技巧

 珍惜题目中给你的条件。数学题目中的条件都是不多也不少的,一道给出的题目,不会有用不到的条件,而另一方面,你要相信给出的条件一定是可以做到正确答案的。所以,解题时,一切都从题目条件出发,只有这样,一切才都有可能。

 在数学家波利亚的四个解题步骤中,第一步审题格外重要,审题步骤中,又有这样一个技巧:当你对整道题目没有思路时:步骤1将题目条件推汇出“新条件”,步骤2将题目结论推导到“新结论”.

 步骤1就是不要理会题目中你不理解的部分,只要你根据题目条件把能做的先做出来,能推导的先推汇出来,从而得到“新条件”。步骤2就是想要得到 题目的结论,我需要先得到什么结论,这就是所谓的“新结论”。然后在“新条件”与“新结论”之间再寻找关系。一道难题,难就难在题目条件与结论的关系难以 建立,而你自己推出的“新条件”与“新结论”之间的关系往往比原题更容易建立,这也意味着解出题目的可能性也就越大!

 最后要提醒的是,虽然我们认为最后一题有相当分值的易得分部分,但是毕竟已是整场考试的最后阶段,强弩之末势不能穿鲁缟,疲劳不可避免,因此所有同学在做最后一题时,都要格外小心谨慎,避免易得分部分因为疲劳出错,导致失分的遗憾结果出现。

 高考数学压轴题分析方法

 1、综合性强,突出数学思想方法的运用。

 近几年数学高考压轴题,在考查基础知识的基础上,注重对数学思想和方法的考查,注重对数学能力的考查。对数学思想和方法的考查,是对数学知识在更高层次的抽象和概括的考查。数学高考压轴题,已经由单纯的知识叠加型转化为知识、方法、能力综合型,尤其是创新能力型试题。压轴题是高考试题的精华部分,具有知识容量大、解题方法多、能力要求高、突显数学思想方法的运用以及要求考生具有一定的探究意识、创新意识和创新能力等特点。

 2、高观点性,与高等数学知识接轨。

 所谓高观点题,是指与高等数学相联络的一些数学问题。这样的问题或以高等数学知识为背景,或体现高等数学中常用的数学思想方法和推理方法。由于高考的选拔功能,这类题往往倍受命题者青睐。近年来的考题中,出现了不少背景新、设问巧的高观点题,成为高考题中一道亮丽的风景。

 3、交汇性,强调各个数学分支的交汇。

 高考数学命题,在考查基础知识的基础上,注重在知识网路的交汇点上设计试题,重视对数学思想方法与数学能力的考查,是近年来高考试题的特色。高考数学压轴题讲究各个数学分支的综合与交汇,有利于加强对考生分析问题与解决问题的能力考查。

 4、结论或条件比较新颖

 在这类试题往往内涵丰富,立意新颖,表述脱俗,背景鲜活,设问独特,让人赏心悦目,回味无穷,给人耳目一新的感觉。

文章标签: # 数学 # 题目 # 高考