您现在的位置是: 首页 > 教育分析 教育分析

高考数学第九题_高考数学第九题2024答案解析

tamoadmin 2024-07-21 人已围观

简介1.2022全国乙卷理科数学试卷及答案解析2.数学解题过程,。3.求高中数学排列组合解题技巧4.高考数学最后一题,到底有多难?今年的全国高考数学选择题中出了两道有关建筑的题目,一道是埃及胡夫金字塔,另一道则是我们所熟知的天坛。两道题都是以知名建筑作为材料引入,但是本质上都是考的数学计算,但是也千万不要小瞧这两道题,如果考生的空间想象力不够,想要做对这两道题还是有一定的难度的,下面我们就一起来看一下

1.2022全国乙卷理科数学试卷及答案解析

2.数学解题过程,。

3.求高中数学排列组合解题技巧

4.高考数学最后一题,到底有多难?

高考数学第九题_高考数学第九题2024答案解析

今年的全国高考数学选择题中出了两道有关建筑的题目,一道是埃及胡夫金字塔,另一道则是我们所熟知的天坛。两道题都是以知名建筑作为材料引入,但是本质上都是考的数学计算,但是也千万不要小瞧这两道题,如果考生的空间想象力不够,想要做对这两道题还是有一定的难度的,下面我们就一起来看一下这两道题,看一下到底有多难。

第一道题就是埃及胡夫金字塔,题目中有提到它的形状可以视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥的一个侧面三角形的面积,问侧面三角形底边上的高与底面正方形边长的比值?这道题是一个立体几何题,要想做对这道题考场上可以画一个简图,不需要特别精确你能看懂就行,毕竟考场时间最重要,比如下面这个。

其实这道题没有太大难度,只要把题目读懂就能列出方程,第一个方程要用到勾股定理,第二个方程要用到面积相等。为了简便计算我们可以设正四棱锥底边长为2,这里解释一下为什么要设为2?其实不设成2也可以,你设成1、4、?、x、b这些数都可以,因为最后结果是一个比值,你不管设成什么最后都会被约掉。如果你题目做得多了一眼就能看出设边长为2最简单,因为一半刚好是1,后面进行计算的时候1的平方还是1,这样能节约很多计算的时间。作为一个选择题不要自己给自己找麻烦,能快速做出答案就可以。最后上面那两个式子合并之后就能得到一个一元二次方程,解出来之后有两个解,一个负数舍掉,然后再比上边长2就是正确答案C!这道题的难度有两点,一能不能画出图形,二能不能列出上面两个式子并解出来。

接下来是全国二卷的选择第4题,考的是天坛最后问的是三层共有扇面型石板多少块?高考题确实是有一定难度的,但是考试也不能太着急,一定要仔细花时间读题,把题目中的关系理清楚。高考题的4个选项中就算错误答案也不是随便给的,有同学问我刚好算错而且选项中还有错的这个答案,怎么这么巧?这不是巧合,出题老师在出题设置四个选项的时候就已经考虑到了学生可能算错的情况有哪些,可能会算出来什么答案。

我们开始看这道题,先看最上面一层,第一环是9块,向外每环增加9块第二环就应该是18,第三环应该就是27,这是一个公差为9等差数列,求和公式Sn如上图,这个求和公式不做过多解释,设看到这里的同学已经学完了所有高中知识。因为每一层的环数相同,所以第二环的石板个数应该是第二个大圆减去第一个小圆即S2n-Sn,同理最下面的那一环石板个数用第三个大圆减去第二个圆即S3n-S2n,这三组公式又组成了等差数列,公差为n^2d,平常做的题多了应该很容易记住这个二级结论,不会也没关系考场的是可以推出来的。所以由题意可得729=公差=n^2d,d=9,n=9,也就是一共有九环。然后我们把三个式子加起来就是3402,其实这道题你也可以完全把这个天坛拍扁,就看成平面上的三个同心圆,就是S3n本身。因此这道题的答案是3402,选择C。这道题本身是有难度的,个人感觉比金字塔要难一些,这道题你做对了吗?

2022全国乙卷理科数学试卷及答案解析

高中数学重点知识与结论分类解析

一、集合与简易逻辑

1.集合的元素具有确定性、无序性和互异性.

2.对集合 , 时,必须注意到“极端”情况: 或 ;求集合的子集时是否注意到 是任何集合的子集、 是任何非空集合的真子集.

3.对于含有 个元素的有限集合 ,其子集、真子集、非空子集、非空真子集的个数依次为

4.“交的补等于补的并,即 ”;“并的补等于补的交,即 ”.

5.判断命题的真 关键是“抓住关联字词”;注意:“不‘或’即‘且’,不‘且’即‘或’”.

6.“或命题”的真特点是“一真即真,要全”;“且命题”的真特点是“一即,要真全真”;“非命题”的真特点是“一真一”.

7.四种命题中“‘逆’者‘交换’也”、“‘否’者‘否定’也”.

原命题等价于逆否命题,但原命题与逆命题、否命题都不等价.反证法分为三步:设、推矛、得果.

注意:命题的否定是“命题的非命题,也就是‘条件不变,仅否定结论’所得命题”,但否命题是“既否定原命题的条件作为条件,又否定原命题的结论作为结论的所得命题” ?.

8.充要条件

二、函 数

1.指数式、对数式, , ,

, , , , , , .

2.(1)映射是“‘全部射出’加‘一箭一雕’”;映射中第一个集合 中的元素必有像,但第二个集合 中的元素不一定有原像( 中元素的像有且仅有下一个,但 中元素的原像可能没有,也可任意个);函数是“非空数集上的映射”,其中“值域是映射中像集 的子集”.

(2)函数图像与 轴垂线至多一个公共点,但与 轴垂线的公共点可能没有,也可任意个.

(3)函数图像一定是坐标系中的曲线,但坐标系中的曲线不一定能成为函数图像.

3.单调性和奇偶性

(1)奇函数在关于原点对称的区间上若有单调性,则其单调性完全相同.

偶函数在关于原点对称的区间上若有单调性,则其单调性恰恰相反.

注意:(1)确定函数的奇偶性,务必先判定函数定义域是否关于原点对称.确定函数奇偶性的常用方法有:定义法、图像法等等.对于偶函数而言有: .

(2)若奇函数定义域中有0,则必有 .即 的定义域时, 是 为奇函数的必要非充分条件.

(3)确定函数的单调性或单调区间,在解答题中常用:定义法(取值、作差、鉴定)、导数法;在选择、填空题中还有:数形结合法(图像法)、特殊值法等等.

(4)既奇又偶函数有无穷多个( ,定义域是关于原点对称的任意一个数集).

(7)复合函数的单调性特点是:“同性得增,增必同性;异性得减,减必异性”.

复合函数的奇偶性特点是:“内偶则偶,内奇同外”.复合函数要考虑定义域的变化。(即复合有意义)

4.对称性与周期性(以下结论要消化吸收,不可强记)

(1)函数 与函数 的图像关于直线 ( 轴)对称.

推广一:如果函数 对于一切 ,都有 成立,那么 的图像关于直线 (由“ 和的一半 确定”)对称.

推广二:函数 , 的图像关于直线 (由 确定)对称.

(2)函数 与函数 的图像关于直线 ( 轴)对称.

(3)函数 与函数 的图像关于坐标原点中心对称.

推广:曲线 关于直线 的对称曲线是 ;

曲线 关于直线 的对称曲线是 .

(5)类比“三角函数图像”得:若 图像有两条对称轴 ,则 必是周期函数,且一周期为 .

如果 是R上的周期函数,且一个周期为 ,那么 .

特别:若 恒成立,则 .若 恒成立,则 .若 恒成立,则 .

三、数  列

1.数列的通项、数列项的项数,递推公式与递推数列,数列的通项与数列的前 项和公式的关系: (必要时请分类讨论).

注意: ; .

2.等差数列 中:

(1)等差数列公差的取值与等差数列的单调性.

(2) ; .

(3) 、 也成等差数列.

(4)两等差数列对应项和(差)组成的新数列仍成等差数列.

(5) 仍成等差数列.

(6) , , , , .

(7) ; ; .

(8)“首正”的递减等差数列中,前 项和的最大值是所有非负项之和;

“首负”的递增等差数列中,前 项和的最小值是所有非正项之和;

(9)有限等差数列中,奇数项和与偶数项和的存在必然联系,由数列的总项数是偶数还是奇数决定.若总项数为偶数,则“偶数项和”-“奇数项和”=总项数的一半与其公差的积;若总项数为奇数,则“奇数项和”-“偶数项和”=此数列的中项.

(10)两数的等差中项惟一存在.在遇到三数或四数成等差数列时,常考虑选用“中项关系”转化求解.

(11)判定数列是否是等差数列的主要方法有:定义法、中项法、通项法、和式法、图像法(也就是说数列是等差数列的充要条件主要有这五种形式).

3.等比数列 中:

(1)等比数列的符号特征(全正或全负或一正一负),等比数列的首项、公比与等比数列的单调性.

(2) ; .

(3) 、 、 成等比数列; 成等比数列 成等比数列.

(4)两等比数列对应项积(商)组成的新数列仍成等比数列.

(5) 成等比数列.

(6) .

特别: .

(7) .

(8)“首大于1”的正值递减等比数列中,前 项积的最大值是所有大于或等于1的项的积;“首小于1”的正值递增等比数列中,前 项积的最小值是所有小于或等于1的项的积;

(9)有限等比数列中,奇数项和与偶数项和的存在必然联系,由数列的总项数是偶数还是奇数决定.若总项数为偶数,则“偶数项和”=“奇数项和”与“公比”的积;若总项数为奇数,则“奇数项和”=“首项”加上“公比”与“偶数项和”积的和.

(10)并非任何两数总有等比中项.仅当实数 同号时,实数 存在等比中项.对同号两实数 的等比中项不仅存在,而且有一对 .也就是说,两实数要么没有等比中项(非同号时),如果有,必有一对(同号时).在遇到三数或四数成等差数列时,常优先考虑选用“中项关系”转化求解.

(11)判定数列是否是等比数列的方法主要有:定义法、中项法、通项法、和式法(也就是说数列是等比数列的充要条件主要有这四种形式).

4.等差数列与等比数列的联系

(1)如果数列 成等差数列,那么数列 ( 总有意义)必成等比数列.

(2)如果数列 成等比数列,那么数列 必成等差数列.

(3)如果数列 既成等差数列又成等比数列,那么数列 是非零常数数列;但数列 是常数数列仅是数列既成等差数列又成等比数列的必要非充分条件.

(4)如果两等差数列有公共项,那么由他们的公共项顺次组成的新数列也是等差数列,且新等差数列的公差是原两等差数列公差的最小公倍数.

如果一个等差数列与一个等比数列有公共项顺次组成新数列,那么常选用“由特殊到一般的方法”进行研讨,且以其等比数列的项为主,探求等比数列中那些项是他们的公共项,并构成新的数列.

注意:(1)公共项仅是公共的项,其项数不一定相同,即研究 .但也有少数问题中研究 ,这时既要求项相同,也要求项数相同.(2)三(四)个数成等差(比)的中项转化和通项转化法.

5.数列求和的常用方法:

(1)公式法:①等差数列求和公式(三种形式),

②等比数列求和公式(三种形式),

③ , , , .

(2)分组求和法:在直接运用公式法求和有困难时,常将“和式”中“同类项”先合并在一起,再运用公式法求和.

(3)倒序相加法:在数列求和中,若和式中到首尾距离相等的两项和有其共性或数列的通项与组合数相关联,则常可考虑选用倒序相加法,发挥其共性的作用求和(这也是等差数列前 和公式的推导方法).

(4)错位相减法:如果数列的通项是由一个等差数列的通项与一个等比数列的通项相乘构成,那么常选用错位相减法,将其和转化为“一个新的的等比数列的和”求解(注意:一般错位相减后,其中“新等比数列的项数是原数列的项数减一的差”!)(这也是等比数列前 和公式的推导方法之一).

(5)裂项相消法:如果数列的通项可“分裂成两项差”的形式,且相邻项分裂后相关联,那么常选用裂项相消法求和.常用裂项形式有:

① ,

② ,

特别声明:?运用等比数列求和公式,务必检查其公比与1的关系,必要时分类讨论.

(6)通项转换法。

四、三角函数

1. 终边与 终边相同( 的终边在 终边所在射线上) .

终边与 终边共线( 的终边在 终边所在直线上) .

终边与 终边关于 轴对称 .

终边与 终边关于 轴对称 .

终边与 终边关于原点对称 .

一般地: 终边与 终边关于角 的终边对称 .

与 的终边关系由“两等分各象限、一二三四”确定.

2.弧长公式: ,扇形面积公式: ,1弧度(1rad) .

3.三角函数符号特征是:一是全正、二正弦正、三是切正、四余弦正.

注意: ,

, .

4.三角函数线的特征是:正弦线“站在 轴上(起点在 轴上)”、余弦线“躺在 轴上(起点是原点)”、正切线“站在点 处(起点是 )”.务必重视“三角函数值的大小与单位圆上相应点的坐标之间的关系,‘正弦’ ‘纵坐标’、‘余弦’ ‘横坐标’、‘正切’ ‘纵坐标除以横坐标之商’”;务必记住:单位圆中角终边的变化与 值的大小变化的关系. 为锐角 .

5.三角函数同角关系中,平方关系的运用中,务必重视“根据已知角的范围和三角函数的取值,精确确定角的范围,并进行定号”;

6.三角函数诱导公式的本质是:奇变偶不变,符号看象限.

7.三角函数变换主要是:角、函数名、次数、系数(常值)的变换,其核心是“角的变换”!

角的变换主要有:已知角与特殊角的变换、已知角与目标角的变换、角与其倍角的变换、两角与其和差角的变换.

如 , , , , 等.

常值变换主要指“1”的变换:

等.

三角式变换主要有:三角函数名互化(切割化弦)、三角函数次数的降升(降次、升次)、运算结构的转化(和式与积式的互化).解题时本着“三看”的基本原则来进行:“看角、看函数、看特征”,基本的技巧有:巧变角,公式变形使用,化切割为弦,用倍角公式将高次降次.

注意:和(差)角的函数结构与符号特征;余弦倍角公式的三种形式选用;降次(升次)公式中的符号特征.“正余弦‘三兄妹— ’的联系”(常和三角换元法联系在一起 ).

角公式中角的确定: (其中 角所在的象限由a, b的符号确定, 角的值由 确定)在求最值、化简时起着重要作用.尤其是两者系数绝对值之比为 的情形. 有实数解 .

8.三角函数性质、图像及其变换:

(1)三角函数的定义域、值域、单调性、奇偶性、有界性和周期性

注意:正切函数、余切函数的定义域;绝对值对三角函数周期性的影响:一般说来,某一周期函数解析式加绝对值或平方,其周期性是:弦减半、切不变.既为周期函数又是偶函数的函数自变量加绝对值,其周期性不变;其他不定.如 的周期都是 , 但 的周期为 , y=|tanx|的周期不变,问函数y=cos|x|, ,y=cos|x|是周期函数吗?

(2)三角函数图像及其几何性质:

(3)三角函数图像的变换:两轴方向的平移、伸缩及其向量的平移变换.

(4)三角函数图像的作法:三角函数线法、五点法(五点横坐标成等差数列)和变换法.

9.三角形中的三角函数:

(1)内角和定理:三角形三角和为 ,任意两角和与第三个角总互补,任意两半角和与第三个角的半角总互余.锐角三角形 三内角都是锐角 三内角的余弦值为正值 任两角和都是钝角 任意两边的平方和大于第三边的平方.

(2)正弦定理: (R为三角形外接圆的半径).

注意:已知三角形两边一对角,求解三角形时,若运用正弦定理,则务必注意可能有两解.

(3)余弦定理: 等,常选用余弦定理鉴定三角形的类型.

(4)面积公式: .

五、向 量

1.向量运算的几何形式和坐标形式,请注意:向量运算中向量起点、终点及其坐标的特征.

2.几个概念:零向量、单位向量(与 共线的单位向量是 ,特别: )、平行(共线)向量(无传递性,是因为有 )、相等向量(有传递性)、相反向量、向量垂直、以及一个向量在另一向量方向上的投影( 在 上的投影是 ).

3.两非零向量平行(共线)的充要条件

两个非零向量垂直的充要条件

特别:零向量和任何向量共线. 是向量平行的充分不必要条件!

4.平面向量的基本定理:如果e1和e2是同一平面内的两个不共线向量,那么对该平面内的任一向量a,有且只有一对实数 、 ,使a= e1+ e2.

5.三点 共线 共线;

向量 中三终点 共线 存在实数 使得: 且 .

6.向量的数量积: , ,

注意: 为锐角 且 不同向;

为直角 且 ;

为钝角 且 不反向;

是 为钝角的必要非充分条件.

向量运算和实数运算有类似的地方也有区别:一个封闭图形首尾连接而成的向量和为零向量,这是题目中的天然条件,要注意运用;对于一个向量等式,可以移项,两边平方、两边同乘以一个实数,两边同时取模,两边同乘以一个向量,但不能两边同除以一个向量,即两边不能约去一个向量;向量的“乘法”不满足结合律,即 ,切记两向量不能相除(相约).

7.

注意: 同向或有 ;

反向或有 ;

不共线 .(这些和实数集中类似)

8.中点坐标公式 , 为 的中点.

中, 过 边中点; ;

. 为 的重心;

特别 为 的重心.

为 的垂心;

所在直线过 的内心(是 的角平分线所在直线);

的内心.

六、不等式

1.(1)解不等式是求不等式的解集,最后务必有集合的形式表示;不等式解集的端点值往往是不等式对应方程的根或不等式有意义范围的端点值.

(2)解分式不等式 的一般解题思路是什么?(移项通分,分子分母分解因式,x的系数变为正值,标根及奇穿过偶弹回);

(3)含有两个绝对值的不等式如何去绝对值?(一般是根据定义分类讨论、平方转化或换元转化);

(4)解含参不等式常分类等价转化,必要时需分类讨论.注意:按参数讨论,最后按参数取值分别说明其解集,但若按未知数讨论,最后应求并集.

2.利用重要不等式 以及变式 等求函数的最值时,务必注意a,b (或a ,b非负),且“等号成立”时的条件是积ab或和a+b其中之一应是定值(一正二定三等四同时).

3.常用不等式有: (根据目标不等式左右的运算结构选用)

a、b、c R, (当且仅当 时,取等号)

4.比较大小的方法和证明不等式的方法主要有:差比较法、商比较法、函数性质法、综合法、分析法

5.含绝对值不等式的性质:

同号或有 ;

异号或有 .

注意:不等式恒成立问题的常规处理方式?(常应用方程函数思想和“分离变量法”转化为最值问题).

6.不等式的恒成立,能成立,恰成立等问题

(1).恒成立问题

若不等式 在区间 上恒成立,则等价于在区间 上

若不等式 在区间 上恒成立,则等价于在区间 上

(2).能成立问题

若在区间 上存在实数 使不等式 成立,即 在区间 上能成立, ,则等价于在区间 上

若在区间 上存在实数 使不等式 成立,即 在区间 上能成立, ,则等价于在区间 上的 .

(3).恰成立问题

若不等式 在区间 上恰成立, 则等价于不等式 的解集为 .

若不等式 在区间 上恰成立, 则等价于不等式 的解集为 ,

七、直线和圆

1.直线倾斜角与斜率的存在性及其取值范围;直线方向向量的意义( 或 )及其直线方程的向量式( ( 为直线的方向向量)).应用直线方程的点斜式、斜截式设直线方程时,一般可设直线的斜率为k,但你是否注意到直线垂直于x轴时,即斜率k不存在的情况?

2.知直线纵截距 ,常设其方程为 或 ;知直线横截距 ,常设其方程为 (直线斜率k存在时, 为k的倒数)或 .知直线过点 ,常设其方程为 或 .

注意:(1)直线方程的几种形式:点斜式、斜截式、两点式、截矩式、一般式、向量式.以及各种形式的局限性.(如点斜式不适用于斜率不存在的直线,还有截矩式呢?)

与直线 平行的直线可表示为 ;

与直线 垂直的直线可表示为 ;

过点 与直线 平行的直线可表示为:

过点 与直线 垂直的直线可表示为:

(2)直线在坐标轴上的截距可正、可负、也可为0.直线两截距相等 直线的斜率为-1或直线过原点;直线两截距互为相反数 直线的斜率为1或直线过原点;直线两截距绝对值相等 直线的斜率为 或直线过原点.

(3)在解析几何中,研究两条直线的位置关系时,有可能这两条直线重合,而在立体几何中一般提到的两条直线可以理解为它们不重合.

3.相交两直线的夹角和两直线间的到角是两个不同的概念:夹角特指相交两直线所成的较小角,范围是 ,而其到角是带有方向的角,范围是 .

注:点到直线的距离公式

特别: ;

4.线性规划中几个概念:约束条件、可行解、可行域、目标函数、最优解.

5.圆的方程:最简方程 ;标准方程 ;

一般式方程 ;

参数方程 为参数);

直径式方程 .

注意:

(1)在圆的一般式方程中,圆心坐标和半径分别是 .

(2)圆的参数方程为“三角换元”提供了样板,常用三角换元有:

, ,

6.解决直线与圆的关系问题有“函数方程思想”和“数形结合思想”两种思路,等价转化求解,重要的是发挥“圆的平面几何性质(如半径、半弦长、弦心距构成直角三角形,切线长定理、割线定理、弦切角定理等等)的作用!”

(1)过圆 上一点 圆的切线方程是: ,

过圆 上一点 圆的切线方程是: ,

过圆 上一点 圆的切线方程是: .

如果点 在圆外,那么上述直线方程表示过点 两切线上两切点的“切点弦”方程.

如果点 在圆内,那么上述直线方程表示与圆相离且垂直于 ( 为圆心)的直线方程, ( 为圆心 到直线的距离).

7.曲线 与 的交点坐标 方程组 的解;

过两圆 、 交点的圆(公共弦)系为 ,当且仅当无平方项时, 为两圆公共弦所在直线方程.

八、圆锥曲线

1.圆锥曲线的两个定义,及其“括号”内的限制条件,在圆锥曲线问题中,如果涉及到其两焦点(两相异定点),那么将优先选用圆锥曲线第一定义;如果涉及到其焦点、准线(一定点和不过该点的一定直线)或离心率,那么将优先选用圆锥曲线第二定义;涉及到焦点三角形的问题,也要重视焦半径和三角形中正余弦定理等几何性质的应用.

(1)注意:①圆锥曲线第一定义与配方法的综合运用;

②圆锥曲线第二定义是:“点点距为分子、点线距为分母”,椭圆 点点距除以点线距商是小于1的正数,双曲线 点点距除以点线距商是大于1的正数,抛物线 点点距除以点线距商是等于1.③圆锥曲线的焦半径公式如下图:

2.圆锥曲线的几何性质:圆锥曲线的对称性、圆锥曲线的范围、圆锥曲线的特殊点线、圆锥曲线的变化趋势.其中 ,椭圆中 、双曲线中 .

重视“特征直角三角形、焦半径的最值、焦点弦的最值及其‘顶点、焦点、准线等相互之间与坐标系无关的几何性质’”,尤其是双曲线中焦半径最值、焦点弦最值的特点.

注意:等轴双曲线的意义和性质.

3.在直线与圆锥曲线的位置关系问题中,有“函数方程思想”和“数形结合思想”两种思路,等价转化求解.特别是:

①直线与圆锥曲线相交的必要条件是他们构成的方程组有实数解,当出现一元二次方程时,务必“判别式≥0”,尤其是在应用韦达定理解决问题时,必须先有“判别式≥0”.

②直线与抛物线(相交不一定交于两点)、双曲线位置关系(相交的四种情况)的特殊性,应谨慎处理.

③在直线与圆锥曲线的位置关系问题中,常与“弦”相关,“平行弦”问题的关键是“斜率”、“中点弦”问题关键是“韦达定理”或“小小直角三角形”或“点差法”、“长度(弦长)”问题关键是长度(弦长)公式

( , , )或“小小直角三角形”.

④如果在一条直线上出现“三个或三个以上的点”,那么可选择应用“斜率”为桥梁转化.

4.要重视常见的寻求曲线方程的方法(待定系数法、定义法、直译法、代点法、参数法、交轨法、向量法等), 以及如何利用曲线的方程讨论曲线的几何性质(定义法、几何法、代数法、方程函数思想、数形结合思想、分类讨论思想和等价转化思想等),这是解析几何的两类基本问题,也是解析几何的基本出发点.

注意:①如果问题中涉及到平面向量知识,那么应从已知向量的特点出发,考虑选择向量的几何形式进行“摘帽子或脱靴子”转化,还是选择向量的代数形式进行“摘帽子或脱靴子”转化.

②曲线与曲线方程、轨迹与轨迹方程是两个不同的概念,寻求轨迹或轨迹方程时应注意轨迹上特殊点对轨迹的“完备性与纯粹性”的影响.

③在与圆锥曲线相关的综合题中,常借助于“平面几何性质”数形结合(如角平分线的双重身份)、“方程与函数性质”化解析几何问题为代数问题、“分类讨论思想”化整为零分化处理、“求值构造等式、求变量范围构造不等关系”等等.

九、直线、平面、简单多面体

1.计算异面直线所成角的关键是平移(补形)转化为两直线的夹角计算

2.计算直线与平面所成的角关键是作面的垂线找射影,或向量法(直线上向量与平面法向量夹角的余角),三余弦公式(最小角定理, ),或先运用等积法求点到直线的距离,后虚拟直角三角形求解.注:一斜线与平面上以斜足为顶点的角的两边所成角相等 斜线在平面上射影为角的平分线.

3.空间平行垂直关系的证明,主要依据相关定义、公理、定理和空间向量进行,请重视线面平行关系、线面垂直关系(三垂线定理及其逆定理)的桥梁作用.注意:书写证明过程需规范.

特别声明:

①证明计算过程中,若有“中点”等特殊点线,则常借助于“中位线、重心”等知识转化.

②在证明计算过程中常将运用转化思想,将具体问题转化 (构造) 为特殊几何体(如三棱锥、正方体、长方体、三棱柱、四棱柱等)中问题,并获得去解决.

③如果根据已知条件,在几何体中有“三条直线两两垂直”,那么往往以此为基础,建立空间直角坐标系,并运用空间向量解决问题.

4.直棱柱、正棱柱、平行六面体、长方体、正方体、正四面体、棱锥、正棱锥关于侧棱、侧面、对角面、平行于底的截面的几何体性质.

如长方体中:对角线长 ,棱长总和为 ,全(表)面积为 ,(结合 可得关于他们的等量关系,结合基本不等式还可建立关于他们的不等关系式), ;

如三棱锥中:侧棱长相等(侧棱与底面所成角相等) 顶点在底上射影为底面外心,侧棱两两垂直(两对对棱垂直) 顶点在底上射影为底面垂心,斜高长相等(侧面与底面所成相等)且顶点在底上在底面内 顶点在底上射影为底面内心.

如正四面体和正方体中:

5.求几何体体积的常规方法是:公式法、割补法、等积(转换)法、比例(性质转换)法等.注意:补形:三棱锥 三棱柱 平行六面体 分割:三棱柱中三棱锥、四三棱锥、三棱柱的体积关系是 .

6.多面体是由若干个多边形围成的几何体.棱柱和棱锥是特殊的多面体.

正多面体的每个面都是相同边数的正多边形,以每个顶点为其一端都有相同数目的棱,这样的多面体只有五种, 即正四面体、正六面体、正八面体、正十二面体、正二十面体.

9.球体积公式 ,球表面积公式 ,是两个关于球的几何度量公式.它们都是球半径及的函数.

十、导 数

1.导数的意义:曲线在该点处的切线的斜率(几何意义)、瞬时速度、边际成本(成本为因变量、产量为自变量的函数的导数). , (C为常数), , .

2.多项式函数的导数与函数的单调性:

在一个区间上 (个别点取等号) 在此区间上为增函数.

在一个区间上 (个别点取等号) 在此区间上为减函数.

3.导数与极值、导数与最值:

(1)函数 在 处有 且“左正右负” 在 处取极大值;

函数 在 处有 且“左负右正” 在 处取极小值.

注意:①在 处有 是函数 在 处取极值的必要非充分条件.

②求函数极值的方法:先找定义域,再求导,找出定义域的分界点,列表求出极值.特别是给出函数极大(小)值的条件,一定要既考虑 ,又要考虑验“左正右负”(“左负右正”)的转化,否则条件没有用完,这一点一定要切记.

③单调性与最值(极值)的研究要注意列表!

(2)函数 在一闭区间上的最大值是此函数在此区间上的极大值与其端点值中的“最大值”;

函数 在一闭区间上的最小值是此函数在此区间上的极小值与其端点值中的“最小值”;

注意:利用导数求最值的步骤:先找定义域 再求出导数为0及导数不存在的的点,然后比较定义域的端点值和导数为0的点对应函数值的大小,其中最大的就是最大值,最小就为最小值.

4.应用导数求曲线的切线方程,要以“切点坐标”为桥梁,注意题目中是“处?”还是“过?”,对“二次抛物线”过抛物线上一点的切线 抛物线上该点处的切线,但对“三次曲线”过其上一点的切线包含两条,其中一条是该点处的切线,另一条是与曲线相交于该点.

5.注意应用函数的导数,考察函数单调性、最值(极值),研究函数的性态,数形结合解决方程不等式等相关问题.

十一、概率、统计、算法(略) 赞同

数学解题过程,。

十年寒窗标记的生活刻度难以磨灭,伏案苦读也没法用一句“俱往矣”概括,高考注定将是莘莘学子生活之书里浓墨重彩的章节。下面我为大家带来2022全国乙卷理科数学试卷及答案解析,希望对您有帮助,欢迎参考阅读!

2022全国乙卷理科数学试卷及答案解析

高考数学解题技巧

1、首先是精选题目,做到少而精。只有解决质量高的、有代表性的题目才能达到事半功倍的效果。然而绝大多数的同学还没有辨别、分析题目好坏的能力,这就需要在老师的指导下来选择复习的练习题,以了解高考题的形式、难度。

2、其次是分析题目。解答任何一个数学题目之前,都要先进行分析。相对于比较难的题目,分析更显得尤为重要。我们知道,解决数学问题实际上就是在题目的已知条件和待求结论中架起联系的桥梁,也就是在分析题目中已知与待求之间差异的基础上,化归和消除这些差异。当然在这个过程中也反映出对数学基础知识掌握的熟练程度、理解程度和数学 方法 的灵活应用能力。例如,许多三角方面的题目都是把角、函数名、结构形式统一后就可以解决问题了,而选择怎样的三角公式也是成败的关键。

3、最后,题目 总结 。解题不是目的,我们是通过解题来检验我们的学习效果,发现学习中的不足的,以便改进和提高。因此,解题后的总结至关重要,这正是我们学习的大好机会。对于一道完成的题目,有以下几个方面需要总结:

①在知识方面,题目中涉及哪些概念、定理、公式等基础知识,在解题过程中是如何应用这些知识的。②在方法方面:如何入手的,用到了哪些解题方法、技巧,自己是否能够熟练掌握和应用。③能不能把解题过程概括、归纳成几个步骤(比如用数学归纳法证明题目就有很明显的三个步骤)。④能不能归纳出题目的类型,进而掌握这类题目的解题通法(我们反对老师把现成的题目类型给学生,让学生拿着题目套类型,但我们鼓励学生自己总结、归纳题目类型)。

高考数学知识点

第一、高考数学中有函数、数列、三角函数、平面向量、不等式、立体几何等九大章节。

主要是考函数和导数,这是我们整个高中阶段里最核心的板块,在这个板块里,重点考察两个方面:第一个函数的性质,包括函数的单调性、奇偶性;第二是函数的解答题,重点考察的是二次函数和高次函数,分函数和它的一些分布问题,但是这个分布重点还包含两个分析就是二次方程的分布的问题,这是第一个板块。

第二、平面向量和三角函数。

重点考察三个方面:一个是划减与求值,第一,重点掌握公式,重点掌握五组基本公式。第二,是三角函数的图像和性质,这里重点掌握正弦函数和余弦函数的性质,第三,正弦定理和余弦定理来解三角形。难度比较小。

第三、数列。

数列这个板块,重点考两个方面:一个通项;一个是求和。

第四、空间向量和立体几何,在里面重点考察两个方面:一个是证明;一个是计算。

第五、概率和统计。

这一板块主要是属于数学应用问题的范畴,当然应该掌握下面几个方面,第一……等可能的概率,第二………,第三是独立,还有独立重复发生的概率。

第六、解析几何。

这是我们比较头疼的问题,是整个试卷里难度比较大,计算量的题,当然这一类题,我总结下面五类常考的题型,包括:

第一类所讲的直线和曲线的位置关系,这是考试最多的内容。考生应该掌握它的通法;

第二类我们所讲的动点问题;

第三类是弦长问题;

第四类是对称问题,这也是2008年高考已经考过的一点;

第五类重点问题,这类题时往往觉得有思路,但是没有答案,

当然这里我相等的是,这道题尽管计算量很大,但是造成计算量大的原因,往往有这个原因,我们所选方法不是很恰当,因此,在这一章里我们要掌握比较好的算法,来提高我们做题的准确度,这是我们所讲的第六大板块。

第七、押轴题。

考生在备考复习时,应该重点不等式计算的方法,虽然说难度比较大,我建议考生,取分部得分整个试卷不要留空白。这是高考所考的七大板块核心的考点。

高三数学 知识点总结:抽样方法

随机抽样

简介

(抽签法、随机样数表法)常常用于总体个数较少时,它的主要特征是从总体中逐个抽取;

优点:操作简便易行

缺点:总体过大不易实行

方法

(1)抽签法

一般地,抽签法就是把总体中的N个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本。

(抽签法简单易行,适用于总体中的个数不多时。当总体中的个体数较多时,将总体“搅拌均匀”就比较困难,用抽签法产生的样本代表性差的可能性很大)

(2)随机数法

随机抽样中,另一个经常被用的方法是随机数法,即利用随机数表、随机数骰子或计算机产生的随机数进行抽样。

分层抽样

简介

分层抽样主要特征分层按比例抽样,主要使用于总体中的个体有明显差异。共同点:每个个体被抽到的概率都相等N/M。

定义

一般地,在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样。

整群抽样

定义

什么是整群抽样

整群抽样又称聚类抽样。是将总体中各单位归并成若干个互不交叉、互不重复的集合,称之为群;然后以群为抽样单位抽取样本的一种抽样方式。

应用整群抽样时,要求各群有较好的代表性,即群内各单位的差异要大,群间差异要小。

优缺点

整群抽样的优点是实施方便、节省经费;

整群抽样的缺点是往往由于不同群之间的差异较大,由此而引起的抽样误差往往大于简单随机抽样。

实施步骤

先将总体分为i个群,然后从i个群钟随即抽取若干个群,对这些群内所有个体或单元均进行调查。抽样过程可分为以下几个步骤:

一、确定分群的标注

二、总体(N)分成若干个互不重叠的部分,每个部分为一群。

三、据各样本量,确定应该抽取的群数。

四、用简单随机抽样或系统抽样方法,从i群中抽取确定的群数。

例如,调查中学生患近视眼的情况,抽某一个班做统计;进行产品检验;每隔8h抽1h生产的全部产品进行检验等。

与分层抽样的区别

整群抽样与分层抽样在形式上有相似之处,但实际上差别很大。

分层抽样要求各层之间的差异很大,层内个体或单元差异小,而整群抽样要求群与群之间的差异比较小,群内个体或单元差异大;

分层抽样的样本是从每个层内抽取若干单元或个体构成,而整群抽样则是要么整群抽取,要么整群不被抽取。

系统抽样

定义

当总体中的个体数较多时,用简单随机抽样显得较为费事。这时,可将总体分成均衡的几个部分,然后按照预先定出的规则,从每一部分抽取一个个体,得到所需要的样本,这种抽样叫做系统抽样。

步骤

一般地,设要从容量为N的总体中抽取容量为n的样本,我们可以按下列步骤进行系统抽样:

(1)先将总体的N个个体编号。有时可直接利用个体自身所带的号码,如学号、准考证号、门牌号等;

(2)确定分段间隔k,对编号进行分段。当N/n(n是样本容量)是整数时,取k=N/n;

(3)在第一段用简单随机抽样确定第一个个体编号l(l≤k);

(4)按照一定的规则抽取样本。通常是将l加上间隔k得到第2个个体编号(l+k),再加k得到第3个个体编号(l+2k),依次进行下去,直到获取整个样本。

2022全国乙卷理科数学试题及答案解析相关 文章 :

★ 2022北京卷高考文科数学试题及答案解析

★ 2022全国甲卷文科数学卷试题及答案一览

★ 2022年全国乙卷高考语文真题试卷及答案解析(未公布)

★ 2022高考甲卷数学真题试卷及答案

★ 2022高考全国甲卷数学试题及答案

★ 2022年全国新高考2卷语文真题及答案解析

★ 2021年高考全国甲卷数学理科答案

★ 数学考试试卷及答案大全

★ 数学考试试卷及答案大全

★ 2017年中考数学试题附答案

求高中数学排列组合解题技巧

高考数学难度比例为7:2:1,也就是说80%都是基础题。然而数学却是高考中最拉分的。90%的学生都缺少一套科学,高效的解题 方法 和步骤,尤其到了冲刺阶段!那么接下来给大家分享一些关于高考数学选择题解题步骤,希望对大家有所帮助。 高考数学选择题解题步骤 1.突破运算 运算是考场解题的奠基石,运算能力不过关,解题基本无法进行到最后,据估计高三学生绝大多数同学都或多或少有运算困扰,但是却苦于无从提高,因为这被公认为是“基础”没有人也没有资料专门讲解,如果有也是把很多题目放在一块,这是造成很多学生运算一直无法提高的主要原因. 2.突破概念公式图形 这一块内容在课本或者资料上都有详细归纳,但高一高二解题一般公式书归纳的内容基本可以,但是进入高三,随着题目的复杂化,你会发现,课本或者公式书上的内容还远远不够,我就举一些高一课本中的简单例子,如函数的奇偶性周期性等考试中会涉及很多结论,而这些可能在书上或一般公式书都没有,怎么办?这就需要你自己 总结 ,又如函数的零点定理,它只是充分条件而不是必要条件,那么需要添加什么才能变成充要条件呢,再比如空间几何经常会考一些内外接球,可能你会计算,但是在考场上如果你没有归纳出内外接球半径计算公式,那么最终你可能由于时间关系外加紧张,可能会出现错误。 同时考试中涉及的图形可能并不完全是课本中熟知的,而是课本中基本图形的扩展图形,什么是扩展图形呢,我举一个简单例子,如直线大家都会画,那么对x或y添加绝对值,或者对x,y同时加绝对值它的图形你还会画吗?又如反比例函数y=1/x,扩展图形y=2x+1/x ,y=-2x+1/x, y=(-2x+1)/(x+3)等你知道吗? 3.突破选择 选择题在考试中占据半壁江山,选择题的解题的解答直接会影响到整个试卷的做题规划,那么如何在较短的时间内提高选择题的解题效率是我们无法回避的现实问题。那么选择题到底该如何突破呢? 突破选择题主要包括:选项特征,选择题快速计算技巧,选择题题目特征及解法,以及一些常见选择题的特殊结论等 4.突破-解答题 解答题是考试中我们遇到的另外一种题型,但是它的解法不同于选择题,由于高考中解答题的特殊性,使我们可以通过一些策略可以取得令人满意的分数。 一般高考考场中的解答题题型基本是固定的,所以我们可以通过归纳出的一些结论,特殊公式,一般解题思路及模板等再结合四步解题思路完成解答题的快速求解。 高考数学选择题秒杀方法与技巧 一:直选法——简单直观 这种方法一般适用于基本不需要“转变”或推理的简单题目.这些题目主要考查考生对物理识记内容的记忆和理解程度,属常识性知识题目.常见考纲中的Ⅰ级要求内容。 二:比较排除法——排除异己 这种方法要在读懂题意的基础上,根据题目的要求,先将明显的错误或不合理的备选答案一个一个地排除掉,最后只剩下正确的答案。如果选项是完全肯定或否定的判断,可通过举反例的方式排除;如果选项中有相互矛盾或者是相互排斥的选项,则两个选项中可能有一种说法是正确的,当然,也可能两者都错,但绝不可能两者都正确。 三:特殊值法、极值法——投机取巧 对较难直接判断选项的正误量,可以让某些物理量巧取满足题设条件的特殊值或极值,带入到各选项中逐个进行检验,凡是用特殊值或极值检验证明是不正确的选项,就一定是错误的,可以排除。这种方法往往可以省去严密的逻辑推理或繁杂的数学证明。 四:极限思维法——无所不极 物理中体现的极限思维常见方法有极端思维法、微元法。当题目所涉及的物理量随条件单调变化时,可用极限法是把某个物理量推向极端,即极大或极小,极左或极右,并据此做出科学的推理分析,从而给出判断或导出一般结论。 微元法是把物理过程或研究对象分解为众多细小的 “微元”,只需对这些“微元”进行必要的数学方法或物理思想处理,便可使问题得于求解。 五:代入法——事半功倍 对于一些计算型的选择题,可以将题目选项中给出的答案直接代入进行检验,或在计算程中某阶段代入检验,常可以有效地减少数算量。 六:对比归谬法——去伪存真 对于一些选项间有相互关联的高考选择题,有时可能会出现如果选项A正确即会有选项B正确或选项C也正确的情况,对于答案应为单选或双选的选择题可用此方法进行排除错误选项。 七:整体、隔离法——双管齐下 研究对象为多个时,首先要想到利用整体、隔离法去求解。常用思路是整体求外力,隔离求内力,先整体后隔离,两种方法配合使用。 八:对称分析法——左右开弓 对于有对称性的物理问题,我们可以充分利用其特点,快速简便地求解问题 九:图像图解法——立竿见影 根据题目的内容画出图像或示意图,如物体的运动图像、受力示意图、光路图等,再利用图像分析寻找答案,利用图像或示意图解答时,具有形象、直观的特点,便于了解各物理量之间的关系,能够避免繁琐的计算,迅速简便地找出正确的答案。 十: 逆向思维 法——另辟蹊径 很多物理过程具有可逆性,如运动的可逆性,光路的可逆性等,在沿着正向“由因到果”去分析受阻时,可“反其道而行之”,沿着逆向“由果到因”的过程去思考,常常收到化难为易、出奇制胜的效果。 十一:举例求证法——避实就虚 有些选择题中带有“可能”、“可以”等不确定的词语,只要能举出一个特殊例子证明它正确,就可以肯定这个选择项是正确的;有些选择题的选项中带有“一定”“不可能”等肯定的词语,只要能举出一个反例驳倒这个选项,就可以排除这个选项。 十二:转换对象法——反客为主 在一些问题中,如以题目中给出的物体作为研究对象去分析问题,有可能十分复杂或无法解答,这时可以变换研究对象,转换为我们熟悉的问题,使分析问题变得简单易行,最后再去找出待求量。 十三:二级结论法——迅速准确 “二级结论”是指由基本规律和基本公式导出的结论,熟记并巧用.一些“二级结论”可以使思维简化,节约解题时间,其能常常使我们 “看到题就知道答案”,达到迅速准确的目的。 十四:比例分析法——化繁为简 两个物理量的数学关系明确时,利用他们的比例规律可以使数学计算简化,应用此方法必须明确研究的物理问题中涉及的物理量是什么关系,明确哪些相同量,哪些是不同量。 十五:控制变量法——以寡敌众 对多变量问题,有时用每一次只改变其中一个变量而控制其余几个量不变的方法,使其变成较简单的单变量问题,大大降低问题的分析复杂程度,这种方法是科学探究中和重要思想方法,也是物理中常用的探索问题和分析问题的科学方法之一。 十六:量纲分析法——纲举目张 对于以字母形式出现的计算型选择题,物理公式表达了物理量间的数量和单位的双重关系,所以可以用物理量的单位来衡量和检验该物理量的运算结果是否正确。常用此方法来判断计算结果的正确性,选择题中常用其来排除一些错误选项。 十七:等效替换法——殊途同归 也可称等效处理法,类析法。是把较陌生、复杂的物理现象、物理过程在保证某种效果、特性或关系相同的前提下,转化为简单、熟悉的物理现象或物理过程来研究,从而认识清楚研究对象本质和规律的一种思想方法。常用的如等效重力场、类平抛运动、等效电源、力或运动的合成与分解的等效性、万有引力与库仑力的类比性等。 十八:临界分析法——以点带面 求解物理量的范围问题可以用临界分析法,充分利用临界条件进行快速求解,常见的临界条件如:物体“刚好脱离”:接触但弹力为零件物体“刚要相对滑动”:受到最大静摩擦力;粒子“刚要飞出磁场”:轨迹与磁场相切,等等。 十九:建立模型法——即物明理 物理模型是一种理想化的物理形态,是物理知识的一种直观表现,模型思维法是利用类比、抽象、简化、理想化等手段,突出物理过程的主要因素,忽略次要因素,把研究对象的物理本质特征抽象出来,从而进行分析和推理的一种思维方法.在遇到以新颖的背景、陌生的材料和前沿的知识为命题素材,联系工农业生产、高科技或相关物理理论的题目时,如何能根据题意从题干中抽象出我们所熟悉的物理模型是解题的关键. 二十:计算推理法——有理有据 根据题给条件,利用有关的物理规律、物理公式或物理原理通过逻辑推理或计算得出正确答案,然后再与备选答案对照做出选择。 高考数学解题技巧 1.先易后难,逐步增加习题的难度 人们认识事物的过程都是从简单到复杂。简单的问题解多了,从而使概念清晰了,对公式、定理以及解题步骤熟悉了,解题时就会形成跳跃性思维,解题的速度就会大大提高。 我们在学习时,应根据自己的能力,先去解那些看似简单,却很重要的习题,以不断提高解题速度和解题能力。随着速度和能力的提高,再逐渐增加难度,就会达到事半功倍的效果。 2.保质保量拿下中下等题目 中下题目通常占全卷的80%以上,是试题的主要部分,是考生得分的主要来源。谁能保质保量地拿下这些题目,就已算是打了个胜仗,有了胜利在握的心理,对攻克高难题会更放得开。 3.面—点—线 解决应用性问题,首先要全面调查题意,迅速接受概念,此为"面";透过冗长叙述,抓住重点词句,提出重点数据,此为"点";综合联系,提炼关系,依靠数学方法,建立数学模型,此为"线",如此将应用性问题转化为纯数学问题。当然,求解过程和结果都不能离开实际背景。 4.限时答题,先提速后纠正错误 很多同学做题慢的一个重要原因就是平时做作业习惯了拖延时间,导致形成了一个不太好的解题习惯。所以,提高解题速度就要先解决“拖延症”。比较有效的方式是限时答题,例如在做数学作业时,给自己限时,先不管正确率,首先保证在规定时间内完成数学作业,然后再去纠正错误。这个过程对提高书写速度和思考效率都有较好的作用。当你习惯了一个较快的思考和书写后,解题速度自然就会提高,及改正了拖延的毛病,也提高了成绩。

高考数学选择题解题步骤相关 文章 : ★ 高考数学选择题答题技巧汇总大全 ★ 数学选择题八大解题方法 ★ 2019高考数学选择题万能答题技巧及方法 ★ 高考常用的选择题解题方法 ★ 高考数学选择题答题技巧 ★ 高考数学选择题答题技巧大全 ★ 高考数学基础题型答题技巧及解题步骤 ★ 2020高考数学选择题解题技巧 ★ 高考数学题型归纳及选择题答题技巧

高考数学最后一题,到底有多难?

高考数学排列组合方法

排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,用合理恰当的方法来处理。

复习

1.分类计数原理(加法原理)

完成一件事,有

类办法,在第1类办法中有

种不同的方法,在第2类办法中有

种不同的方法,…,在第

类办法中有

种不同的方法,那么完成这件事共有:

种不同的方法.

2.分步计数原理(乘法原理)

完成一件事,需要分成

个步骤,做第1步有

种不同的方法,做第2步有

种不同的方法,…,做第

步有

种不同的方法,那么完成这件事共有:

种不同的方法.

3.分类计数原理分步计数原理区别

分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。

分步计数原理各步相互依存,每步中的方法完成的一个阶段,不能完成整个.

解决排列组合综合性问题的一般过程如下:

1.认真审题弄清要做什么事

2.怎样做才能完成所要做的事,即取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。

3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素.

4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略

一.特殊元素和特殊位置优先策略

例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.

解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置.

先排末位共有

然后排首位共有

最后排其它位置共有

由分步计数原理得

位置分析法和元素分析法是解决排列组合问题最常用也是最基本的方法,若以元素分析为主,需先安排特殊元素,再处理其它元素.若以位置分析为主,需先满足特殊位置的要求,再处理其它位置。若有多个约束条件,往往是考虑一个约束条件的同时还要兼顾其它条件

练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?

二.相邻元素捆绑策略

例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.

解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。由分步计数原理可得共有

种不同的排法

要求某几个元素必须排在一起的问题,可以用捆绑法来解决问题.即将需要相邻的元素合并为一个元素,再与其它元素一起作排列,同时要注意合并元素内部也必须排列.

练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20

三.不相邻问题插空策略

例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种?

解:分两步进行第一步排2个相声和3个独唱共有

种,第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种

不同的方法,由分步计数原理,节目的不同顺序共有

元素相离问题可先把没有位置要求的元素进行排队再把不相邻元素插入中间和两端

练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 30

四.定序问题倍缩空位插入策略

例4.7人排队,其中甲乙丙3人顺序一定共有多少不同的排法

解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素之间的全排列数,则共有不同排法种数是:

(空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有

种方法,其余的三个位置甲乙丙共有 1种坐法,则共有

种方法。

思考:可以先让甲乙丙就坐吗?

(插入法)先排甲乙丙三个人,共有1种排法,再把其余4四人依次插入共有 方法

定序问题可以用倍缩法,还可转化为占位插

空模型处理

练习题:10人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐增加,共有多少排法?

五.重排问题求幂策略

例5.把6名实习生分配到7个车间实习,共有多少种不同的分法

解:完成此事共分六步:把第一名实习生分配到车间有 7 种分法.把第二名实习生分配到车间也有7种分依此类推,由分步计数原理共有

种不同的排法

允许重复的排列问题的特点是以元素为研究对象,元素不受位置的约束,可以逐一安排各个元素的位置,一般地n不同的元素没有限制地安排在m个位置上的排列数为

练习题:

1. 某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插法的种数为 42

2. 某8层大楼一楼电梯上来8名乘客人,他们到各自的一层下电梯,下电梯的方法

六.环排问题线排策略

例6. 8人围桌而坐,共有多少种坐法?

解:围桌而坐与坐成一排的不同点在于,坐成圆形没有首尾之分,所以固定一人

并从此位置把圆形展成直线其余7人共有(8-1)!种排法即

一般地,n个不同元素作圆形排列,共有(n-1)!种排法.如果从n个不同元素中取出m个元素作圆形排列共有

练习题:6颗颜色不同的钻石,可穿成几种钻石圈 120

七.多排问题直排策略

例7.8人排成前后两排,每排4人,其中甲乙在前排,丙在后排,共有多少排法

解:8人排前后两排,相当于8人坐8把椅子,可以把椅子排成一排.个特殊元素有

种,再排后4个位置上的特殊元素丙有

种,其余的5人在5个位置上任意排列有

种,则共有

一般地,元素分成多排的排列问题,可归结为一排考虑,再分段研究.

练习题:有两排座位,前排11个座位,后排12个座位,现安排2人就座规定前排中间的3个座位不能坐,并且这2人不左右相邻,那么不同排法的种数是 346

八.排列组合混合问题先选后排策略

例8.有5个不同的小球,装入4个不同的盒内,每盒至少装一个球,共有多少不同的装法.

解:第一步从5个球中选出2个组成复合元共有

种方法.再把4个元素(包含一个复合元素)装入4个不同的盒内有

种方法,根据分步计数原理装球的方法共有

解决排列组合混合问题,先选后排是最基本的指导思想.此法与相邻元素捆绑策略相似吗?

练习题:一个班有6名战士,其中正副班长各1人现从中选4人完成四种不同的任务,每人完成一种任务,且正副班长有且只有1人参加,则不同的选法有 192 种

九.小集团问题先整体后局部策略

例9.用1,2,3,4,5组成没有重复数字的五位数其中恰有两个偶数夹1,5在两个奇数之间,这样的五位数有多少个?

解:把1,5,2,4当作一个小集团与3排队共有

种排法,再排小集团内部共有

种排法,由分步计数原理共有

种排法.

小集团排列问题中,先整体后局部,再结合其它策略进行处理。

练习题:

1.展出10幅不同的画,其中1幅水彩画,4幅油画,5幅国画, 排成一行陈列,要求同一 

品种的必须连在一起,并且水彩画不在两端,那么共有陈列方式的种数为

2. 5男生和5女生站成一排照像,男生相邻,女生也相邻的排法有

十.元素相同问题隔板策略

例10.有10个运动员名额,分给7个班,每班至少一个,有多少种分配方案?

解:因为10个名额没有差别,把它们排成一排。相邻名额之间形成9个空隙。在9个空档中选6个位置插个隔板,可把名额分成7份,对应地分给7个班级,每一种插板方法对应一种分法共有

种分法。

将n个相同的元素分成m份(n,m为正整数),每份至少一个元素,可以用m-1块隔板,插入n个元素排成一排的n-1个空隙中,所有分法数为

练习题:

1. 10个相同的球装5个盒中,每盒至少一有多少装法?

2 .

求这个方程组的自然数解的组数

十一.正难则反总体淘汰策略

例11.从0,1,2,3,4,5,6,7,8,9这十个数字中取出三个数,使其和为不小于10的偶数,不同的

取法有多少种?

解:这问题中如果直接求不小于10的偶数很困难,可用总体淘汰法。这十个数字中有5个偶数5个奇数,所取的三个数含有3个偶数的取法有

,只含有1个偶数的取法有

,和为偶数的取法共有

。再淘汰和小于10的偶数共9种,符合条件的取法共有

有些排列组合问题,正面直接考虑比较复杂,而它的反面往往比较简捷,可以先求出它的反面,再从整体中淘汰.

练习题:我们班里有43位同学,从中任抽5人,正、副班长、团支部书记至少有一人在内的

抽法有多少种?

十二.平均分组问题除法策略

例12. 6本不同的书平均分成3堆,每堆2本共有多少分法?

解: 分三步取书得

种方法,但这里出现重复计数的现象,不妨记6本书为ABCDEF,若第一步取AB第二步取CD,第三步取EF该分法记为(AB,CD,EF),则

中还有(AB,EF,CD),(CD,AB,EF),(CD,EF,AB)(EF,CD,AB),(EF,AB,CD)共有

种取法 ,而这些分法仅是(AB,CD,EF)一种分法,故共有

种分法。

平均分成的组,不管它们的顺序如何,都是一种情况,所以分组后要一定要除以

(

为均分的组数)避免重复计数。

练习题:

1 将13个球队分成3组,一组5个队,其它两组4个队, 有多少分法?(

2.10名学生分成3组,其中一组4人, 另两组3人但正副班长不能分在同一组,有多少种不同的

分组方法 (1540)

3.某校高二年级共有六个班级,现从外地转 入4名学生,要安排到该年级的两个班级且每班安

排2名,则不同的安排方案种数为______(

十三. 合理分类与分步策略

例13.在一次演唱会上共10名演员,其中8人能能唱歌,5人会跳舞,现要演出一个2人唱歌2人伴舞的节目,有多少选派方法

解:10演员中有5人只会唱歌,2人只会跳舞3人为全能演员。选上唱歌人员为标准进行研究

只会唱的5人中没有人选上唱歌人员共有

种,只会唱的5人中只有1人选上唱歌人员

种,只会唱的5人中只有2人选上唱歌人员有

种,由分类计数原理共有

种。

解含有约束条件的排列组合问题,可按元素的性质进行分类,按发生的连续过程分步,做到标准明确。分步层次清楚,不重不漏,分类标准一旦确定要贯穿于解题过程的始终。

练习题:

1.从4名男生和3名女生中选出4人参加某个座 谈会,若这4人中必须既有男生又有女生,则不同的选法共有34

2. 3成人2小孩乘船游玩,1号船最多乘3人, 2号船最多乘2人,3号船只能乘1人,他们任选2只船或3只船,但小孩不能单独乘一只船, 这3人共有多少乘船方法. (27)

本题还有如下分类标准:

*以3个全能演员是否选上唱歌人员为标准

*以3个全能演员是否选上跳舞人员为标准

*以只会跳舞的2人是否选上跳舞人员为标准 都可经得到正确结果

十四.构造模型策略

例14. 马路上有编号为1,2,3,4,5,6,7,8,9的九只路灯,现要关掉其中的3盏,但不能关掉相邻的2盏或3盏,也不能关掉两端的2盏,求满足条件的关灯方法有多少种?

解:把此问题当作一个排队模型在6盏亮灯的5个空隙中插入3个不亮的灯有

一些不易理解的排列组合题如果能转化为非常熟悉的模型,如占位填空模型,排队模型,装盒模型等,可使问题直观解决

练习题:某排共有10个座位,若4人就坐,每人左右两边都有空位,那么不同的坐法有多少种?(120)

十五.实际操作穷举策略

例15.设有编号1,2,3,4,5的五个球和编号1,2,3,4,5的五个盒子,现将5个球投入这五个盒子内,要求每个盒子放一个球,并且恰好有两个球的编号与盒子的编号相同,有多少投法

解:从5个球中取出2个与盒子对号有

种还剩下3球3盒序号不能对应,利用实际操作法,如果剩下3,4,5号球, 3,4,5号盒3号球装4号盒时,则4,5号球有只有1种装法,同理3号球装5号盒时,4,5号球有也只有1种装法,由分步计数原理有

3号盒 4号盒 5号盒

对于条件比较复杂的排列组合问题,不易用公式进行运算,往往利用穷举法或画出树状图会收到意想不到的结果

练习题:

1.同一寝室4人,每人写一张贺年卡集中起来,然后每人各拿一张别人的贺年卡,则四张贺年卡不同的分配方式有多少种? (9)

2.给图中区域涂色,要求相邻区 域不同色,现有4种可选颜色,则不同的着色方法有 72种

十六. 分解与合成策略

例16. 30030能被多少个不同的偶数整除

分析:先把30030分解成质因数的乘积形式30030=2×3×5 × 7 ×11×13

依题意可知偶因数必先取2,再从其余5个因数中任取若干个组成乘积,

所有的偶因数为:

练习:正方体的8个顶点可连成多少对异面直线

解:我们先从8个顶点中任取4个顶点构成四体共有体共

,每个四面体有

分解与合成策略是排列组合问题的一种最基本的解题策略,把一个复杂问题分解成几个小问题逐一解决,然后依据问题分解后的结构,用分类计数原理和分步计数原理将问题合成,从而得到问题的答案 ,每个比较复杂的问题都要用到这种解题策略

3对异面直线,正方体中的8个顶点可连成

对异面直线

十七.化归策略

例17. 25人排成5×5方阵,现从中选3人,要求3人不在同一行也不在同一列,不同的选法有多少种?

解:将这个问题退化成9人排成3×3方阵,现从中选3人,要求3人不在同一行也不在同一列,有多少选法.这样每行必有1人从其中的一行中选取1人后,把这人所在的行列都划掉,如此继续下去.从3×3方队中选3人的方法有

种。再从5×5方阵选出3×3方阵便可解决问题.从5×5方队中选取3行3列有

选法所以从5×5方阵选不在同一行也不在同一列的3人有

选法。

处理复杂的排列组合问题时可以把一个问题退化成一个简要的问题,通过解决这个简要的问题的解决找到解题方法,从而进下一步解决原来的问题

练习题:某城市的街区由12个全等的矩形区组成其中实线表示马路,从A走到B的最短路径有多少种?(

)

十八.数字排序问题查字典策略

例18.由0,1,2,3,4,5六个数字可以组成多少个没有重复的比324105大的数?

解:

数字排序问题可用查字典法,查字典的法应从高位向低位查,依次求出其符合要求的个数,根据分类计数原理求出其总数。

练习:用0,1,2,3,4,5这六个数字组成没有重复的四位偶数,将这些数字从小到大排列起来,第71个数是 3140

十九.树图策略

例19.

人相互传球,由甲开始发球,并作为第一次传球,经过

次传求后,球仍回到甲的手中,则不同的传球方式有______

对于条件比较复杂的排列组合问题,不易用

公式进行运算,树图会收到意想不到的结果

练习: 分别编有1,2,3,4,5号码的人与椅,其中

号人不坐

号椅(

)的不同坐法有多少种?

二十.复杂分类问题表格策略

例20.有红、黄、兰色的球各5只,分别标有A、B、C、D、E五个字母,现从中取5只,要求各字母均有且三色齐备,则共有多少种不同的取法

1

1

1

2

2

3

1

2

3

1

2

1

3

2

1

2

1

1

取法

解:

一些复杂的分类选取题,要满足的条件比较多, 无从入手,经常出现重复遗漏的情况,用表格法,则分类明确,能保证题中须满足的条件,能达到好的效果.

二十一:住店法策略

解决“允许重复排列问题”要注意区分两类元素:一类元素可以重复,另一类不能重复,把不能重复的元素看作“客”,能重复的元素看作“店”,再利用乘法原理直接求解.

例21.七名学生争夺五项冠军,每项冠军只能由一人获得,获得冠军的可能的种数有 .

分析:因同一学生可以同时夺得n项冠军,故学生可重复排列,将七名学生看作7家“店”,五项冠军看作5名“客”,每个“客”有7种住宿法,由乘法原理得7

种.

小结

本节课,我们对有关排列组合的几种常见的解题策略加以复习巩固。排列组合历来是学习中的难点,通过我们平时做的练习题,不难发现排列组合题的特点是条件隐晦,不易挖掘,题目多变,解法独特,数字庞大,难以验证。同学们只有对基本的解题策略熟练掌握。根据它们的条件,我们就可以选取不同的技巧来解决问题.对于一些比较复杂的问题,我们可以将几种策略结合起来应用把复杂的问题简单化,举一反三,触类旁通,进而为后续学习打下坚实的基础。

高考数学的最后一道大题,对于很多高三学生来说就是一个噩梦,因为它涉及的知识面比较广,对学生扩展性思维能力要求非常高。而且还需要你将前后知识充分的人会贯通,思维跳跃能力要比较好,对整个题目要纵观全局,一步紧接这一步,环环相扣,还不一定能将它解出来。

我在高考前复习的那段时间,还没有完全放弃最后一道大题,有时候做完一套数学模拟题,我也会试着去钻研一下最后一个大题。在往往是想破脑袋也只能做出来前两问,后面两问看答案就有三四页,能把那些步骤看懂就已经很不错了。

有一次我拿着最后一道大题去问老师,老师拿着那道题研究了一个多小时才做出来,给我讲了半天我也没听懂。老师就会很无奈的说,你自己拿着看一下吧!能看懂多少是多少,这个题对你们来说有点难。

后来复习的那段时间,我几乎都放弃最后一道大题了!即使做也就是象征性的做一下第一问,其他的就不管了。因为做起来太浪费时间了,还不一定能够得分,高考最重要的还是要拿到分数。

最后一道大题考的综合知识能力比较强。如果想把它全部答对,是非常不容易的。高考时间非常紧迫,我们根本没有时间去做。但是我们可以冲着题目的意思,先把自己知道的值算出来。阅卷老师会给我们酌情给分,也不至于全军覆没。

文章标签: # 问题 # 直线 # 方法