您现在的位置是: 首页 > 教育分析 教育分析

数列求和高考题_数列求和高考题20道

tamoadmin 2024-05-18 人已围观

简介(1)2Sn = 3^n+3n=1,2a1=3+3a1=3for n>=2an = Sn - S(n-1)2an = 3^n - 3^(n-1)an = 3^(n-1)(2)letS= 1.(1/3)^0 +2.(1/3)^1+....+n.(1/3)^(n-1) (1)(1/3)S= 1.(1/3)^1 +2.(1/3)^2+....+n.(

数列求和高考题_数列求和高考题20道

(1)

2Sn = 3^n+3

n=1,

2a1=3+3

a1=3

for n>=2

an = Sn - S(n-1)

2an = 3^n - 3^(n-1)

an = 3^(n-1)

(2)

let

S= 1.(1/3)^0 +2.(1/3)^1+....+n.(1/3)^(n-1) (1)

(1/3)S= 1.(1/3)^1 +2.(1/3)^2+....+n.(1/3)^n (2)

(1)-(2)

(2/3)S = [1+1/3+...+1/3^(n-1) ]- n.(1/3)^n

= (3/2)( 1- 1/3^n) - n.(1/3)^n

S = (9/4)( 1- 1/3^n) - (3/2)n.(1/3)^n

an.bn= log<2>an

bn = (n-1) log<2>3/ 3^(n-1)

= (log<2>3) . [ n.(1/3^(n-1)) -1/3^(n-1) ]

Tn = b1+b2+...+bb

= (log<2>3) . [ S - (3/2)(1- 1/3^n) ]

= (log<2>3) . [ (9/4)( 1- 1/3^n) - (3/2)n.(1/3)^n - (3/2)(1- 1/3^n) ]

= (log<2>3) . [ (9/4)( 1- 1/3^n) - 3n.(1/3)^n ]

= (log<2>3) .(1/4) [ 9( 1- 1/3^n) - 12n.(1/3)^n ]

= (log<2>3) .(1/4) [ 9-(12n+9) (1/3)^n ]

文章标签: # gt # log # lt