您现在的位置是: 首页 > 教育改革 教育改革

江苏高考数学基础训练_江苏高考数学基础

tamoadmin 2024-07-02 人已围观

简介1.2021江苏高考数学难度分析2.2023年江苏高考数学试卷难吗3.2023年高考数学难不难江苏4.2011高考数学考纲 江苏5.江苏高考数学2023难度怎么样6.我是江苏2013届应届生,学的文科,数学基础很差,请问《五年高考三年模拟》对我适用么,请大家给个建议...2023年江苏高考数学试卷的难度适中。江苏高考数学试卷在应用性进行重点探索,取得突破。江苏高考数学试题注重理论联系实际,体现数学

1.2021江苏高考数学难度分析

2.2023年江苏高考数学试卷难吗

3.2023年高考数学难不难江苏

4.2011高考数学考纲 江苏

5.江苏高考数学2023难度怎么样

6.我是江苏2013届应届生,学的文科,数学基础很差,请问《五年高考三年模拟》对我适用么,请大家给个建议...

江苏高考数学基础训练_江苏高考数学基础

2023年江苏高考数学试卷的难度适中。

江苏高考数学试卷在应用性进行重点探索,取得突破。江苏高考数学试题注重理论联系实际,体现数学的应用价值。总的来说,江苏高考数学卷的难度不是很大,考生只要充分准备,做好基础知识的复习,多练习一些实际应用题,就可以取得满意的成绩。

2023江苏高考用新高考Ⅰ卷。新高考卷语文、数学、外语三门考试由教育部考试中心统一命题;物理、历史、化学、政治、生物、地理由各省自行命题。

2023江苏高考总分值设置为750分。考生总分由统一高考的语文、数学、外语科目成绩和学业水平考试3门选择性考试科目成绩组成。语文、数学、外语3门科目以每门150分原始分计入总分,其中外语科目含听力考试30分。选择性考试科目每门均为100分,其中物理、历史科目以原始分计入总分,其余科目以等级分计入总分。?

高考备考策略

一、作息规律

很多同学在放假后都有睡懒觉的习惯,当然这是人之常情,但却不应该是高考生之常情。身为一个高考生,应该明白现在的头等大事是什么。早上是复习效率最高的时间段,当然不能浪费在睡懒觉这种事情上。

要想有条不紊的、充实的度过这个寒假,首先应该强迫自己保持跟平时一样的作息时间,相信各位同学在这个漫长的秋季学期中已经养成了生物钟,执行起来难度不大。总而言之,寒假复习规划的第一件事是你要有配得上这个规划的意志力,这个意志力首先体现在起床这件事上。

二、规划要具体、合理

其次,应该为自己制定详细的复习规划,规划的内容应包括复习的时间(即每天学习的时间起止点)、科目、以及每个科目阶段性的复习目标。合理的计划一定是劳逸结合的,类似于我要在寒假每天学习15个小时或者我要在寒假前十天复习完物理的所有知识点都是不现实的。

正确的规划应该类似是:今天9点到12点复习完物理中的伏安法测电阻的实验,一周之后复习完电学实验。每一天有具体的的计划,每一个阶段有一个可实现的目标。

三、物理复习内容规划

寒假共40天左右,按照6个科目的重要性及难度,物理分配到的复习时间在8天左右。在寒假结束之前,我们已经复习完力学和电学的部分,同学们已经初步建立起物理的知识体系,但是对于高考考察的题型和侧重点还不熟悉,对于高考综合题的解答还有能力上的欠缺,这个能力需要更长时间的练习和培养。

那么这8天适合复习什么内容呢?答案是实验。实验相对于其他题型来说对知识的要求更有针对性,而且根据高考中实验题的出题特点,实验题考查的内容并不经常变化,所以完全可以通过8天的反复练习来掌握。而且,这个复习的成果将直接体现在高考的成绩上,实在是一劳永逸的效果。

2021江苏高考数学难度分析

江苏今年高考数学难吗介绍如下:

江苏高考数学试卷总体来说难度加大,部分考完高考数学的考生表示,数学题很难。?

高考数学时间分配原则

对于高考数学基础比较薄弱的同学,重在保简易题。鉴于高考数学客观题部分主要是对基础知识点的考察,可以稍稍放慢速度,把时间控制在50-60分钟,力求做到准确细致,尽量保证70分的基础分不丢分。

之后的三道简易高考数学解答题每题平均花10-15分钟完成。至于后三道高考数学大题,建议先阅读完题目,根据题意把可以联想到的常考知识点写出来,例如涉及函数单调性、切线斜率的可对函数求导,圆锥曲线的设出标准方程、数列里求出首项等等。如果没有其它的思路,不要耽误太多时间,把剩下的时间倒回去检查前面的题目。

高考数学题要认真仔细对于一道具体的习题,解题时最重要的环节是审题。审题的第一步是读题,这是获取信息量和思考的过程。所以,在高考数学实际解题时,应特别注意,审题要认真、仔细。

高考数学考试答题技巧及方法

1.调整好状态,控制好自我。

(1)保持清醒。数学的考试时间在下午,建议同学们中午最好休息半个小时或一个小时,其间尽量放松自己,从心理上暗示自己:只有静心休息才能确保考试时清醒。(2)按时到位。今年的答题卡不再单独发放,要求答在答题卷上,但发卷时间应在开考前5-10分钟内。建议同学们提前15-20分钟到达考场。

2.通览试卷,树立自信。

刚拿到试卷,一般心情比较紧张,此时不易匆忙作答,应从头到尾、通览全卷,哪些是一定会做的题要心中有数,先易后难,稳定情绪。答题时,见到简单题,要细心,莫忘乎所以。面对偏难的题,要耐心,不能急。

3.提高解选择题的速度、填空题的准确度。

数学选择题是知识灵活运用,解题要求是只要结果、不要过程。因此,逆代法、估算法、特例法、排除法、数形结合法?尽显威力。12个选择题,若能把握得好,容易的一分钟一题,难题也不超过五分钟。由于选择题的特殊性,由此提出解选择题要求“快、准、巧”,忌讳“小题大做”。填空题也是只要结果、不要过程,因此要力求“完整、严密”。

4.审题要慢,做题要快,下手要准。

题目本身就是破解这道题的信息源,所以审题一定要逐字逐句看清楚,只有细致地审题才能从题目本身获得尽可能多的信息。

找到解题方法后,书写要简明扼要,快速规范,不拖泥带水,牢记高考评分标准是按步给分,关键步骤不能丢,但允许合理省略非关键步骤。答题时,尽量使用数学语言、符号,这比文字叙述要节省而严谨。

5.保质保量拿下中下等题目。

中下题目通常占全卷的80%以上,是试题的主要部分,是考生得分的主要来源。谁能保质保量地拿下这些题目,就已算是打了个胜仗,有了胜利在握的心理,对攻克高难题会更放得开。

6.要牢记分段得分的原则,规范答题。

会做的题目要特别注意表达的准确、考虑的周密、书写的规范、语言的科学,防止被“分段扣点分”。

2023年江苏高考数学试卷难吗

2021江苏省高考数学考试已经结束,与往年一样,江苏高考数学又一次登上热搜。那么江苏高考数学试题到底有多难呢,下面我为大家详细介绍一下,供大家参考。

江苏高考数学难度

江苏省现在的高考模式是自主命题,语数外三门必考,另外,语文和数学各有附加题,文科的考生需要答语文附加题,理科的考生需要答数学附加题。江苏省数学经常有偏题、怪题,150的总分,平均分经常七八十分,甚至还有六十几分的情况。江苏高考再次改革,自2021年起,语数外重回全国卷,江苏的考生彻底欢呼了,他们留下了代表喜悦的眼泪。

2021年江苏高考数学卷秉承以往的风格,与课本联系紧密,题目排序由易到难,学生解题时心理状态能够平和,可以发挥出正常水平。试卷考察的知识点全面,注重基础,同时又有区分度,便于高校选拔人才。压轴题延续以往风格,综合性强。整张试卷在强调“通性通法”的前提下,又包含了中学数学知识中所蕴含的基本数学思想方法。

给下一届考生的建议:江苏高考的数学题目对基础的考查尤为多,所以在复习时一定要回归教材,夯实基础。同时浙江卷的解析题难度较大,要擅长运用数学思想方法,且要注意解题的规范性。认真去研究往年的试题,就如同与出题者进行对话,可以试着去理解出题者的出题意图。不过之后江苏高考要回归全国卷,希望同学们也要尽早适应全国卷的考查方式。

2023年高考数学难不难江苏

2023年江苏高考数学试卷难,具体原因如下:

2023江苏高考数学试题总体来说难度有所增加。2023年江苏数学高考试题在严格把控难度比例的同时,又设计了分明的梯度,为不同水平的考生提供了发挥空间。江苏高考数学试卷总体来说难度加大,部分考完高考数学的考生表示,数学题很难。

高考数学答题技巧:

1、题目阅读

在开始解答任何题目之前,仔细阅读题目并理解问题的要求。注意关键词、条件和限制,确保对问题有清晰的认识。

2、制定解题计划

针对每道题目,可以根据题目类型和难度来制定解题计划。确定采用的解题方法和步骤,以及需要使用的公式或概念。

3、掌握基本知识和公式

高考数学考试侧重于基础知识的应用,所以要熟悉并掌握各类基本数学知识和公式。这包括几何图形的性质、三角函数、方程与不等式、向量、数列等等。

高考数学备考方法:

1、深入理解基础知识

高考数学考试侧重于基础知识的应用和灵活运用能力。因此,首先要全面掌握数学基础知识,包括各类公式、定理和概念的理解。通过系统学习教材,注重理论与实践的结合,多做基础题,培养对数学概念和原理的深入理解。

2、做题方法和技巧的训练

在备考过程中,熟悉和掌握一些解题方法和技巧对提高解题效率和准确性非常重要。可以通过参考解题套路、学习经典例题的解答思路,积累并灵活运用解题的方法和技巧。同时,要注重时间管理,针对不同题型和难度设置合理的解题时间,提高解题速度。

3、多做真题和模拟考试

高考数学真题是了解考试形式和水平的重要参考资料。通过做真题,可以熟悉考试要求、了解命题风格,掌握考点分布和难易度。此外,模拟考试也是非常必要的,可以提前适应高考的紧张氛围和时间压力,检验自己的备考效果,并根据模拟考试的结果进行针对性的调整和提高。

2011高考数学考纲 江苏

2023年高考江苏数学题目比起去年简单很多,难度一般。

2023年高考数学全国卷落实党的二十大精神,全面贯彻党的教育方针,落实立德树人根本任务,促进学生德智体美劳全面发展。

反映新时代基础教育课程理念,落实考试评价改革、高中育人方式改革等相关要求,全面考查数学抽象、逻辑推理、数学建模、直观想象、数学运算和数据分析的核心素养,体现基础性、综合性、应用性和创新性的考查要求,突出理性思维,发挥数学科在人才选拔中的重要作用。

发挥基础学科作用,助力创新人才选拔

2023年高考数学全国卷充分发挥基础学科的作用,突出素养和能力考查,甄别思维品质、展现思维过程,给考生搭就了展示的舞台、发挥的空间,致力于服务人才自主培养质量提升和现代化建设人才选拔。

首先是重点考查逻辑推理素养,如新课标Ⅰ卷第7题以等差数列为材料考查充要条件的推证,要求考生判别充分性和必要性,然后分别进行证明,解决问题的关键是利用等差数列的概念和特点进行推理论证。

新课标Ⅱ卷第11题,其本质是根据一元二次方程根的性质判定方程系数之间的关系,题中函数经过求导以后,其既有极大值又有极小值的性质可以转化为一元二次方程有两个正根。全国乙卷理科第21题要求考生根据参数的性质进行分类推理讨论,考查了思维的条理性、严谨性。

深入考查直观想象素养,如全国甲卷理科第15题要求通过想象与简单计算确定球面与正方体棱的公共点的个数。全国乙卷理科第19题以几何体为依托,考查空间线面关系。

新课标Ⅱ卷第9题以多选题的形式考查圆锥的内容,题目全面考查基础,四个选项设问逐次递进,前面的选项为后面的选项提供了条件,各选项分别考查圆锥的不同性质,互相联系,重点突出。

扎实考查数学运算素养,要求考生理解运算对象,掌握运算法则,探究运算思路,求得运算结果。如新课标Ⅰ卷第17题以正弦定理、同角三角函数基本关系式、解三角形等数学内容,考查数学运算素养。

新课标Ⅱ卷第10题设置了直线与抛物线相交的情境,通过直线方程与抛物线方程的联立考查计算能力。

江苏高考数学2023难度怎么样

2011年江苏省高考说明

数学科

一、命题指导思想

根据普通高等学校对新生文化素质的要求,20011年普通高等学校招生全国统一考试数学学科(江苏卷)命题将依据中华人民共和国教育部颁发的《普通高中数学课程标准(实验)》,参照《普通高等学校招生全国统一考试大纲(课程实验版)》,结合江苏普通高中课程教学要求,既考查中学数学的基础知识和方法,又考查进入高等学校继续学习所必须的基本能力.

突出数学基础知识、基本技能、基本思想方法的考查

对数学基础知识和基本技能的考查,贴近教学实际,既注意全面,又突出重点.注重知识内在联系的考查,注重对中学数学中所蕴涵的数学思想方法的考查.

2.重视数学基本能力和综合能力的考查

数学基本能力主要包括空问想象、抽象概括、推理论证、运算求解、数据处理这几方面的能力.

(1)空间想象能力的考查要求是:能够根据题设条件想象并作出正确的平面直观图形,能够根据平面直观图形想象出空间图形;能够正确地分析出图形中基本元素及其相互关系, 并能够对空间图形进行分解和组合.

(2)抽象概括能力的考查要求是:能够通过对实例的探究发现研究对象的本质;能够从给定的信息材料中概括出一些结论,并用于解决问题或作出新的判断.

(3)推理论证能力的考查要求是:能够根据已知的事实和已经获得的正确的数学命题,运用归纳、类比和演绎进行推理,论证某一数学命题的真假性.

(4)运算求解能力的考查要求是:能够根据法则、公式进行运算及变形;能够根据问题的条件寻找与设计合理、简捷的运算途径;能够根据要求对数据进行估计或近似计算.

(5)数据处理能力考查要求是:能够运用基本的统计方法对数据进行整理、分析,以解决给定的实际问题.

数学综合能力的考查,主要体现为分析问题与解决问题能力的考查,要求能够综合地运用有关的知识与方法,解决较为困难的或综合性的问题.

3.注重数学的应用意识和创新意识的考查

数学的应用意识的考查要求是:能够运用所学的数学知识、思想和方法,构造数学模型,将一些简单的实际问题转化为数学问题,并加以解决.

创新意识的考查要求是:能够综合、灵活运用所学的数学知识和思想方法,创造性地解决问题。

二、考试内容及要求

数学试题由必做题与附加题两部分组成.选修测试历史的考生仅需对试题中的必做题部分作答;选修测试物理的考生需对试题中必做题和附加题这两部分作答.必做题部分考查的内容是高中必修内容和选修系列l的内容;附加题部分考查的内容是选修系列2(不含选修系列1)中的内容以及选修系列4中专题4—1《几何证明选讲》、4—2《矩阵与变换》、4—4《坐标系与参数方程》、4—5《不等式选讲》这4个专题的内容(考生只需选考其中两个专题).

对知识的考查要求依次分为了解、理解、掌握三个层次(在下表中分别用A、B、C表示).

了解:要求对所列知识的含义有最基本的认识,并能解决相关的简单问题

理解:要求对所列知识有较深刻的认识,并能解决有一定综合性的问题.

掌握:要求系统地掌握知识的内在联系,并能解决综合性较强的或较为困难的问题.

具体考查要求如下:

1 必做题部分

内 容 要 求

A B C

1.集合 集合及其表示 √

子集 √

交集、并集、补集 √

2.函数概念与基本初等函数I 函数的概念 √

函数的基本性质 √

指数与对数 √

指数函数的图象和性质 √

对数函数的图象和性质 √

幂函数 √

函数与方程 √

函数模型及其应用 √

3基本初等函数Ⅱ

(三角函数)、 三角恒等变换

三角函数的有关概念 √

同角三角函数的基本关系式 √ 0

正弦、余弦的诱导公式 √

正弦函数、余弦函数、正切函数的图象与性质 √

函数y=Asin(ωx+φ)的图象与性质 √

两角和(差)的正弦、余弦及正切 √

二倍角的正弦、余弦及正切 √

积化和差、 和差化积、半角公式 √

4.解三角形 正弦定理、余弦定理及其应用 √

5.平面向量 平面向量的概念 √

平面向量的加法、减法及数乘运算 √

平面向量的坐标表示 √

平面向量的数量积 √

平面向量的平行与垂直 √

平面向量的应用 √

6.数列 数列的概念 √

等差数列 √

等比数列 √

7.不等式 基本不等式 √

一元二次不等式 √

线性规划 √

8.复数 复数的概念 √

复数的四则运算 √

复数的几何意义 √

9.导数及其应用 导数的概念 √

导数的几何意义 √

导数的运算 √

利用导数研究函数的单调性和极值 √

导数在实际问题中的应用 √

续表

内 容 要求

A B C

10.算法初步 算法的含义 √

流程图 √

基本算法语句 √

11.常用逻辑用语 命题的四种形式 √

充分条件、必要条件、充分必要条件 √

简单的逻辑联结词 √

全称量词与存在量词 √

12.推理与

证明

合情推理与演绎推理 √

分析法与综合法 √

反证法 √

13.概率、统计 抽样方法 √

总体分布的估计 √

总体特征数的估计 √

变量的相关性 √

随机事件与概率 √

古典概型 √

几何概型 √

互斥事件及其发生的概率 √

14.空间几何体 柱、锥、台、球及其简单组合体 √

柱、锥、台、球的表面积和体积 √

15.点、线、面之间的位置关系 平面及其基本性质 √

直线与平面平行、垂直的判定及性质 √

两平面平行、垂直的判定及性质 √

16.平面解析

几何初步 直线的斜率与倾斜角 √

直线方程 √

直线的平行关系与垂直关系 √

两条直线的交点 √

两点间的距离,点到直线的距离 √

圆的标准方程和一般方程 √

直线与圆、圆与圆的位置关系 √

空间直角坐标系 √

17.圆锥曲线与方程 中心在坐标原点的椭圆的标准方程与几何性质 √

中心在坐标原点的双曲线的标准方程与几何性质 √

顶点在坐标原点的抛物线的标准方程与几何性质 √

2:附加题部分

内容 要 求

A B C

选修系列2:不含选修系列

1

中的内容 1.圆锥曲线与方程

曲线与方程 √

顶点在坐标原点的抛物线的标准方程与几何性质 √

2.空间向量

与立体几何

空间向量的概念 √

空间向量共线、共面的充分必要条件

条件 √

空间向量的加法、减法及数乘运算 √

空间向量的坐标表示 √

空间向量的数量积 √

空间向量的共线与垂直 √

直线的方向向量与平面的法向量 √

空间向量的应用 √

3.导数及其应用 简单的复合函数的导数 √

定积分 √

4.推理与证明 数学归纳法的原理 √

数学归纳法的简单应用 √

5.计数原理 加法原理与乘法原理 √

排列与组合 √

二项式定理 √

6.概率统计 离散型随机变量及其分布列 √

超几何分布 √

条件概率及相互独立事件 √

n次独立重复试验的模型及二项分布 √

离散型随机变量的均值与方差 √

选修系列

4

中含

4

个专题

7.几何证明选讲 相似三角形的判定与性质定理 √

射影定理 √

圆的切线的判定与性质定理 √

圆周角定理,弦切角定理 √

相交弦定理、割线定理、切割线定理 √

圆内接四边形的判定与性质定理 √

8.矩阵与变换 矩阵的概念 √

二阶矩阵与平面向量 √

常见的平面变换 √

矩阵的复合与矩阵的乘法 √

二阶逆矩阵 √

二阶矩阵的特征值和特征向量 √

二阶矩阵的简单应用 √

9.坐标系与参数方程 坐标系的有关概念 √

简单图形的极坐标方程 √

极坐标方程与直角坐标方程的互化 √

参数方程 √

直线、圆及椭圆的参数方程 √

参数方程与普通方程的互化 √

参数方程的简单应用 √

10.不等式选讲 不等式的基本性质 √

含有绝对值的不等式的求解 √

不等式的证明(比较法、综合法、分析法) √

算术-几何平均不等式、柯西不等式 √

利用不等式求最大(小)值 √

运用数学归纳法证明不等式 √

三、考试形式及试卷结构

(一)考试形式

闭卷、笔试.试题分必做题和附加题两部分.必做题部分满分为160分,考试时间120分钟;附加题部分满分为40分,考试时间30分钟.

(二)考试题型

1.必做题 必做题部分由填空题和解答题两种题型组成.其中填空题14题,约占70分;解答题6题,约占90分.

2.附加题 附加题部分由解答题组成,共6题.其中,必做题2小题,考查选修系列2(不含选修系列1)中的内容;选做题共4题,依次考查选修系列4中4—1、4—2、4—4、4—5这4个专题的内容,考生从中选2题作答.

填空题只要求直接写出结果,不必写出计算或推理过程;解答题应写出文字说明、证明过程或演算步骤.

(三)试题难易比例 .

必做题部分由容易题、中等题和难题组成. 容易题、中等题和难题在试题中所占分值的比例大致为4:4:2.

附加题部分由容易题、中等题和难题组成.容易题、中等题和难题在试题中所占分值的比例大致为5:4:1.

四、典型题示例

A.必做题部分

1. 函数y=Asin(ωx+φ)(A,ω,φ为常数,A>0,ω>0)

在闭区间[?π,0]上的图象如图所示,则ω= .

解析本题主要考查三角函数的图象与周期,本题属于容易题.

答案3.

2. 若将一颗质地均匀的骰子(一种各面上分别标有1,2,3,4,5,6个点的正方体玩具),先后抛掷两次,则出现向上的点数之和为4的概率是 .

解析本题主要考查古典概型,本题属于容易题.

答案.

3.若是虚数单位),则乘积的值是

解析本题主要考查复数的基本概念,本题属于容易题.

答案-3

4.设集合,则集合A中有 个元素.

解析本题主要解一元二次不等式、集合的运算等基础知识,本题属于容易题.

答案6

5. 右图是一个算法的流程图,最后输出的W= .

解析本题主要考查算法流程图的基本知识,本题属于容易题.

答案22

6.设直线是曲线的一条切线,

则实数b= .

解析本题主要考查导数的几何意义,切线的求法,本题属于中等题.

答案.

7.在直角坐标系中,抛物线C的顶点为坐标原点,焦点在x轴上,直线y=x与抛物线C交于A,B两点.若P(2,2)为线段AB的中点,则抛物线C的方程为 .

解析本题主要考查中点坐标公式,抛物线的方程等基础知识,本题属于中等题.

答案

8.以点(2,-1)为圆心且与直线相切的圆的方程是 .

解析本题主要考查圆的方程,以及直线与圆的位置关系等基础知识,本题属于中等题.

答案

9.已知数列{}的前项和,若它的第项满足,则 .

解析本题主要考查数列的前n项和与其通项的关系,以及简单的不等式等基础知识,本题属中等题.

参考答案

10.已知向量,若与垂直,则实数的值为________.

解析本题主要考查用坐标表示的平面向量的加减数乘及数量积的运算等基础知识,本题属中等题.

答案

11.设是

解析本题主要考查代数式的变形及基本不等式等基础知识,本题属中等题.

答案3

12.满足条件的三角形的面积的最大值是_______________.

解析本题主要考查灵活运用有关的基础知识解决问题的能力.本题属难题.

答案

二、解答题

13.在ABC中,C-A=, sinB=.

(1)求sinA的值;

(2)设AC=,求ABC的面积.

解析本题主要考查三角恒等变换、正弦定理等基础知识,考查运算求解能力.本题属容易题.

参考答案(1)由,且,

∴,∴,

∴,又,∴

(2)如图,由正弦定理得

∴,又

14.如图,在直三棱柱ABC?A1B1C1中,E,F分别是A1B,A1C的中点,点D在B1C1上,A1DB1C.

求证:(1)EF‖平面ABC;

(2)平面A1FD平面BB1C1C.

解析本题主要考查线面平行、面面垂直等基础知识,考查空间想象能力和推理论证能力.本题属容易题.

参考答案

(1)因为E,F分别是A1B,A1C的中点,所以EF‖BC,又EF平面ABC,BC平面ABC,

∴EF‖平面ABC;

(2)在直三棱柱ABC?A1B1C1中,,

∵A1D平面A1B1C1,∴.

又,BB1B1C=B1,∴.

又,所以平面A1FD平面BB1C1C.

15. 已知椭圆的中心为直角坐标系的原点,焦点在轴上,它的一个项点到两个

焦点的距离分别是7和1.

(1)求椭圆的方程‘

(2)若为椭圆的动点,为过且垂直于轴的直线上的点,

(e为椭圆C的离心率),求点的轨迹方程,并说明轨迹是什么曲线.

解析本题主要考查解析几何中的一些基本内容及基本方法,考查运算求解的能力.本题属中等题.

参考答案(1)设椭圆长半轴长及分别为a,c,由已知得w.w.w.k.s.5.u.c.o.m

{ 解得a=4,c=3,

所以椭圆C的方程为 w.w.w.k.s.5.u.c.o.m

(2)设M(x,y),P(x,),其中由已知得

而,故 ①

由点P在椭圆C上得 w.w.w.k.s.5.u.c.o.m

代入①式并化简得

所以点M的轨迹方程为轨迹是两条平行于x轴的线段. w.w.w.k.s.5.u.c.o.m

16.设函数,曲线在点处的切线方程为.

(1)求的解析式;

(2)证明:曲线上任一点处的切线与直线及直线所围成的三角形的面积是一个(与无关的)定值,并求此定值.

解析本题主要考查导数的几何意义,导数的运算以及直线方程等基础知识,考查运算求解的能力,推理论证能力.本题属中等题.

参考答案(I)方程可化为.

当时,.

又.

于是解得

故.

(II)设为曲线上任一点,由知曲线在点处的切线方程为

,

即.

令得,从而得切线与直线的交点坐标为.

令得,从而得切线与直线的交点坐标为.

所以点处的切线与直线,所围三角形的面积为

.

故曲线上任一点处的切线与直线和直线所围成的三角形面积为定

值,此定值为6.

17.(1)设是各项均不为零的n()项等差数列,且公差,若将此数列删去某一项后得到的数列(按原来的顺序)是等比数列:

①当时,求的数值;②求的所有可能值;

(2)求证:对于一个给定的正整数,存在一个各项及公差均不为零的等差数列,其中任意三项(按原来顺序)都不能组成等比数列。

解析本题以等差数列等比数列为平台,主要考查学生的探索与推理能力.本题属难题.

参考答案首先证明一个“基本事实”:

一个等差数列中,若有连续三项成等比数列,则这个数列的公差d0=0.

事实上,设这个数列中的连续三项a- d0,a,a+ d0成等比数列,则

由此得d0=0.

(1)(ⅰ)当n=4时,由于数列的公差,故由基本事实只可能删去或,

若删去,则由成等比数列,得,因,故由上式得 ,即。此时,数列为-4d,-3d,-2d,-d,满足题设.

若删去,则成等比数列,得.

因,故由上式得,即.此时,数列为d,2d,3d,4d,满足题设.

综上,得或.

(ii)当n≥6时,则从满足题设的数列中删去一项后得到的数列,必有原数列中的连续三项,从而这三项既成等差数列又成等比数列,故由“基本事实”知,数列的公差必为0,这与题设矛盾。所以满足题设的数列的项数。又因题设,故n=4或5

当n=4时,由(i)中的讨论知存在满足题设的数列

当n=5时,若存在满足题设的数列,则由“基本事实”知,删去的项只能是,从而成等比数列,故

,及.

分别简化上述两个等式,得及,故d=0,矛盾。因此,不存在满足题设的项数为5的等差数列.

综上可知,n只能为4.

(2)假设对于某个正整数n,存在一个公差为d的n项等差数列,其中三项成等比数列,这里,则有

化简得 (*)

由知,与或同时为0,或同时不为0。

若,且,则有,

即,得,从而,与题设矛盾.

因此,与同时不为0,所以由(*)得

因为均为非负整数,所以上式右边为有理数,从而为有理数.

于是,对于任意的正整数,只要为无理数,则相应的数列就是满足题意要求的数列。

例如取,那么,n项数列1,,,……,满足要求.

B 附加题部分

1.随机抽取某厂的某种产品200件,经质检,其中有一等品126件、二等品50件、三等品20件、次品4件.已知生产1件一、二、三等品获得的利润分别为6万元、2万元、1万元,而1件次品亏损2万元.设1件产品的利润(单位:万元)为.

(1)求的分布列;

(2)求1件产品的平均利润(即的数学期望);

(3)经技术革新后,仍有四个等级的产品,但次品率降为,一等品率提高为.如果此时要求1件产品的平均利润不小于4.73万元,则三等品率最多是多少?

解析

参考答案

(1)的所有可能取值有6,2,1,-2;,

故的分布列为:

6 2 1 -2

0.63 0.25 0.1 0.02

(2)

(3)设技术革新后的三等品率为,则此时1件产品的平均利润为

依题意,,即,解得

所以三等品率最多为

2. 如图,已知点在正方体的

对角线上,记,当为钝角时,求的取值范围.

2.解(1/3,1)

3.选修4—1 几何证明选讲

如图,设△ABC的外接圆的切线AE与BC的延长线交于点E,∠BAC的平分线与BC交于点D.求证:.

解析

参考答案证明:如图,因为 是圆的切线,

所以,,

又因为是的平分线,

所以

从而

因为 ,

所以 ,故.

因为 是圆的切线,所以由切割线定理知,

,

而,所以

4.选修4—2 矩阵与变换

在平面直角坐标系中,已知的顶点坐标为求在矩阵作用下所得到的图形的面积,这里矩阵。

解析

参考答案.1

5. 选修4—4 坐标系与参数方程

在平面直角坐标系中,点是椭圆上的一个动点,求的最大值.

解析

本题主要考查曲线的参数方程的基本知识,考查运用参数方程解决数学问题的能力.

参考答案因椭圆的参数方程为

故可设动点的坐标为,其中.

因此

所以,当时,取最大值2.

6. 选修4—5:不等式选讲

设求证:

解析

参考答案

我是江苏2013届应届生,学的文科,数学基础很差,请问《五年高考三年模拟》对我适用么,请大家给个建议...

2023江苏高考数学试题总体来说难度有所增加。2023年江苏数学高考试题在严格把控难度比例的同时,又设计了分明的梯度,为不同水平的考生提供了发挥空间。

江苏高考数学是指江苏省普通高考中的数学科目。根据江苏省教育考试院的规定,江苏高考数学考试采用单独命题的方式,分为第一卷和第二卷。

第一卷为选择题,共30个小题,每题5分,考察数学的基本概念、公式和运算技能,题型包括填空题、选择题、计算题等。

第二卷为简答题和证明题,共9道大题,分值不等,考察数学的应用能力、推理能力和证明能力,题型包括解答题、证明题、运算题等。

江苏高考数学的考试内容主要包括数与式、函数、导数与微分、不等式、数列等知识点,涉及到初中和高中数学的基础和拓展内容。除了数学知识点的掌握,江苏高考数学还重视对数学思想和方法的理解和应用。

在备考江苏高考数学时,应该注重理论知识的掌握和实际应用能力的提高,多做练习题和真题,熟悉考试形式和出题思路,同时也要注意复习思维导图和考点归纳总结,以便于梳理知识点和解题方法,最终取得好成绩。

不太实用。我也是2013年高考的人。我建议你如果基础很差的话要这么办。第一步:认真研究课本,先保证课本彻底弄懂了,课本上的题100%的会做。第二补:买套《三年高考两年模拟》这本书比较适合。希望对你有帮助

文章标签: # 数学 # 高考 # 考查