您现在的位置是: 首页 > 教育资讯 教育资讯

高考文科数学二卷2017年_高考文科数学二卷2017

tamoadmin 2024-05-15 人已围观

简介普通高等学校招生全国统一考试,简称“高考”,是合格的高中 毕业 生或具有同等学历的考生参加的全国统一选拔性考试。下面是我为大家收集的关于2022年新高考2卷数学试题及答案。希望可以帮助大家。 新高考二卷数学试卷 新高考二卷数学答案

高考文科数学二卷2017年_高考文科数学二卷2017

普通高等学校招生全国统一考试,简称“高考”,是合格的高中 毕业 生或具有同等学历的考生参加的全国统一选拔性考试。下面是我为大家收集的关于2022年新高考2卷数学试题及答案。希望可以帮助大家。

新高考二卷数学试卷

新高考二卷数学答案

家长在填报志愿中的重要作用

志愿填报对于高考学子的重要性而言不啻于第二场高考。家长们无疑希望在志愿填报上能发挥更有效的作用,多一些把握,少一些风险,多一份希望,少一份遗憾。在既往的经历中,总有一些家长使用了道听途说的信息,加上主观臆断的决策,违背了高考的“游戏规则”,酿成了诸多遗憾。由此引发我们的思考,家长在志愿填报过程中究竟应该扮演什么角色,发挥什么功能?

我们以为,志愿填报是一组矛盾的解析过程。这一组矛盾的三个要素高校、考生、政府政策可以用一个拉丁字母Π来表示。上面的一横表示政府政策,左边的一竖表示高校,右边的一竖表示考生。我国的录取体制是政府制定和解释政策,高校和考生按照既定政策双向选择,政府处于控制监督地位,高校和考生处于对等地位。通常认为,考生总是处于弱者地位,这是从信息获取角度看的。如果考生能够清醒的认识自己,深入了解高校,全面地掌握政策,就能在志愿填报中游刃有余,使自己处于有利地位,解析出一组优美的答案。因此,家长在志愿填报中应该扮演的信息员角色,它的功能应是收集(挖掘)信息、整理(过滤)信息、分析(综合)信息。在此基础上与孩子共同拟定志愿方案。这样的方案将会最大限度地趋向科学合理,避免盲目和失误,进而争取一个成功的结果。下面,向家长们提供一些高考要素的基本信息,信息分析 方法 及权衡策略。

一、我国高校的大体分类

从宏观上说,我国的约1000所高等院校大体分为六个层次。其中国家重点支持的列入“985”工程的10所高校——北大、清华、人大、复旦、上交大、南大、浙大、西交大、中科大、哈工大;第二批获得支持的国内名校——北京师范大学、武汉大学、中山大学、南开大学、同济大学、东南大学等;个省列为重点批次录取的大学;个省普通批次录取的高校(民办本科位于本层次稍后);普通专科学校;民办专科学校。由于各省录取批次的不同,以及社会认可度的差异,此种分类仅具有参考价值。考生应该针对自己的状况,实事求是地为自己定位。由于北大、清华在考生心目中的地位更为特殊,达到该两校录取线的考生一般只占全省考生的0.5%。报考者必须全科优异,绝无弱项,通常都有特长加分,心理素质非常稳定。上述分类均以学校为单位,不涉及校内各专业的差别,而专业差别有时也是比较大的。在高校较为集中的省份,如果我们将考生按 文化 成绩分为优异生(占全省考生的2%),优秀生(向上累计占全省考生的10%),优良生(向上累计占全省考生的20%),良好生(向上累计占全省考生的35%),中等生(向上累计占全省考生的50%),达标生(向上累计占全省考生的65%)的话,这六类考生分别对应于上述六类学校。

值得指出的是,有一些单科性的学校如外语类的北京外国语大学、上海外国语大学,经济类的中国 财经 大学、上海财经大学,电子类的西安电子科技大学、成都电子科技大学,农水类的中国农业大学、南京农业大学、海河大学等办学都很有特色,师资力量也很强,它们的强势学科在国内各列前茅,录取分数却不算很高,值得选报。

高等学校是按专业培养, 教育 部给高等学校的本科专业划分了四个层次,分别是学士学位授予点、硕士学位授予点、博士学位授予点、国家重点学科。这个等级基本反映了各专业的师资力量、教学仪器设备、人才培养质量、科研成果等项要素。建有国家级重点实验室的重点学科,具有更强的科研实力,博士后科研流动站是由博士点提出申请建立,并非一个独立的层次。

高等学校的投档线反映了当年本地区考生报考该校的难易程度。对于招生量不太大的院校,投档线可能会有较大的起伏,即使国内公认的名牌院校也不能幸免。所以分析高校投档线宜采用最近三年的平均值,如能以投档线与同批分数控制线的差额作为分析对象,将更加简洁,一目了然。

根据高考改革的宗旨,今年教育部继续给一些信誉较好的高校自主招生的权力。实行自主招生的高校,有权制定政策,对有培养前途的学生给予照顾录取。照顾的额度最低可以降到同批 分数线 。照顾的对象有严格的入围条件和审核程序。一般说来三类人有望入选,即平时成绩一贯优秀的;在文艺、体育、学科方面有明显特长的;思想道德品质上有良好表现如见义勇为的。符合上述条件者可以事先与高校联系,取得认可。受到检举被查实者,将被取消资格。

二、重新认识自己的孩子

大约有一半的家长对自己的孩子认识的不够准确,其中多数评价过于乐观。如果家长仅仅凭着孩子的陈述和班主任的一般介绍,而未对本班、本校的整体情况作了解,就可能陷入盲目乐观的境地。因为孩子的汇报总是隐恶扬善的,班主任的话总是鼓励性和向前看的。要在三个方面认清自己的孩子包括:第一认清孩子的兴趣和专长,以确定孩子的职业倾向;第二是认清孩子真实的应考实力,以确定报考学校的层次和类别;第三是认清孩子的生活自理能力及身体心理条件,以确定学校的地理位置和学校性质。

教育部考试中心曾对我国的人与职业相互适应的理论作过试验,提出人与职业、专业相适应的七种类型。即:

艺术型(适合的工作有作曲、服装设计、写作)。

经营型(适合从事营销、经营管理、法律事务)。

事务型(适合做秘书、银行柜员、资料管理员等)。

研究型(适合做数据统计分析师、大学教学科研人员)。

自然型(适合从事农产品开发、医疗、矿产勘测等工作)。

技术型(适合担任机械师、驾驶员、工程技术人员)。

社会型(适合担任中小学教师、社区工作者、心理咨询人员、导游等)。

在志愿填报中要充分考虑到孩子的兴趣、 爱好 和性格,毕竟专业选择与从事的职业是紧密相关的。由于年龄与 经验 ,让考生对自己的应考实力进行评价会很难,家长需要掌握的这些评价因素:

1.孩子在学校的真实名次,这种名次不能以最佳发挥的一次来代替,要以平均值加权计算(越接近高考难度的权重越大);

2.本校在全省中学的档次,上几个年度本校高考分数分段人数;

3.孩子在学科上的强项和弱项;

4.孩子的兴趣与志向;

5.如果是考后填志愿,再估计一下孩子的分数。这种分数不能当真,错估的比例不小,势力越强的考生估分越准确;

6.孩子的生活自理能力,心理承受能力。

根据1和2,家长可以估计出孩子在全省的相对名词,从而作选报学校定位;根据3和4,可以决定专业方向,是否服从分配。根据5,家长和孩子复核自己所做出的选择,审查有多少偏差。根据6,决定就读学校的地理位置和学校性质。

三、全面地掌握政策

家长充分熟悉高考政策,可以使志愿填报更客观更准确。需要掌握的政策有:体检标准、志愿填报时间、录取批次、落榜生的安排 措施 、自主招生学校的录取政策、录取时的专业级差、高校调整专业的政策、贫困生的帮扶措施、往届生的政策等。

从2003年起,全国统一的体检标准由刚变柔,即由原先的严格规定变为由高校参考的标准。这一改变适应了我国高等教育由精英教育向大众教育转化的趋势,增加了某些身体条件存在缺陷的考生被录取的机会。高校则根据国家标准,研究各专业的就业特点和身体要求,每年会在考前向社会公布本校的体检要求。由于各校的专业设置与培养目标不同,必然产生不同的体检标准,必要时可以信询或面询。当前考生体检问题最多的项目是视力、色盲(色弱)、肝功能异常。通常视力校正超过800度,色盲和转氨酶高的学生容易被拒收,这类学生降档投考层次较低的学校被录取的可能性就会高一些。

录取批次的顺序很重要。聪明的考生往往会避开上一批次不理想的学校,转而取在心仪的学校;而另一些人则可能相反,落在不想去的学校(专业)而一筹莫展。

高分落榜是很痛心的事情。虽然各省考试机构都在想方设法减少这种情况,许多省份都想方法减少之。但如果考生能事先了解落榜政策,就不会临时手忙脚乱。

自主招生学校的优惠录取政策各不相同,家长和考生不必全了解,只需对感兴趣的学校重点了解,各校的网站都有此类政策公示,理解模糊的一定要打听清楚,以免误解造成悔恨。

录取时的专业级别也很重要,它直接牵涉到专业的安排。级差大的第一专业志愿就显得特别重要,一般高校的专业级差大约是1~5分。考分中等又想避开冷门专业,可以选择专业级差大的学校中不太热门的专业。

四、学科大类的选择

当孩子并没有明显的学科偏好和职业倾向时,如何选科就容易困扰家长。我国高校的培养目标除少数体育、艺术类别外,主要分为文理工农医管几大类,它们在高等学校大多有明确的界定。为了便于高考录取,各省都将农医管等大类分别纳入文科或理工科内。但是一些应用科学、社会科学在理工和文理方面有交融的趋势。在实施“大综合”考试的省、市,已经出现不平衡现象,即高分段文科生少,中低分段理科生少。层次较高的学校文科生源大量短缺造成专业人数失恒,而中低层次的学校又大量短缺理工类生源。因此,如果成绩较好的学生填报文科,而成绩较平的学生填报理科录取的可能就会大一些。从社会需求上说,我国正处于经济高速发展时期,高新技术人才严重缺乏。与之相应的理工科人才培养显得更为迫切。而以研究为主的基础文科和某些应用文科则由于社会发展程度的制约和近几年的大量扩招导致供大于求,所以有些文科生抱怨找不到理想的工作。在理工科的选择方面,由于理科更多地面向教学、科研部门,工科更多的面向生产实践部门,若考虑尽快就业,则选择工科;若拟进一步深造,做研究,则可选理科。由于现代科技知识的更新很快,工科院校也在加大研究型教学力度,以培养更高层次人才,故工科院校中偏理的专业与理科有相似的特点。

五、报考

1.贫困生的报考

家庭贫困的学生填报志愿时需要注意以下几点:

贫困是过去的事,上大学是摆脱贫困的阳光大道。要丢掉思想包袱,坦然面对现实,争取“文化致富”;

大学不是义务教育,上学交费是学生和家长应尽的义务,要想方设法筹集上学费用;

政府、社会和大学为贫困生准备了许多帮扶措施,2002年开始实施的国家奖学金,可奖励受助学生每年6000元,并免除全年学费。社会上也有许多捐资助学款用于奖励和扶助大学生。贫困生只要勤奋学习,就有希望受到资助。

国家助学贷款是助学主 渠道 。发放助学贷款的商业银行要求学生勤奋学习,讲究信用。申请贷款的学生要准备好身份证和经济困难证明。由于银行对欠贷不还现象不能容忍,2003年已经发生学校被停贷事件,有些省份开始实行生源地贷款办法。

有些部门、有些媒体、有些学校出台了帮扶贫困生的措施,我们不要理解为不缴学费也能上学。据估计我国在校贫困大学生约有二百万人(不包含研究生),完全解决他们的学习、生活费用大约需要每年二百亿元。又据教育部统计,我国2002年资助的大学生费用约为70亿元,其中奖学金26.3亿元中,至多20%发给了贫困生,因此实际资助困难大学生的金额约为50亿元(其中国家贷款20亿员应由学生偿还),缺口达到75%。

有一些减免学费或获取资助的途径,报考军事院校(部队待遇),报考国防生(奖学金5000元/年),报考面向西部地区(西藏)和艰苦行业的定向生(定向单位资助)。贫困家庭可以优选之。

2.特长生的报考

某些在艺术、体育、学科和创新能力方面具有特殊才能的学生在他们的特长方面的素质上明显高于普通学生,受到高等学校的垂青,这是他们多年辛苦磨练的成果。需要注意的是,高等学校根据本校的传统特色,只需要一部分类和一定量的特长生,并不是来着不拒。某些省份为特长生源规定了很低的准入线,这条准入线不是高校的提档线,各高校都有他自己的提档线。特长生应在填报志愿前与高校洽商报考事宜,获准后方能报考。招生人员的承诺须以书面为准,任何个人的允诺均无法律效力。

3.残疾生的报考

从2003年起国家教育部门将刚性的体检标准解释为由高校参考执行的参考标准,意在放宽残疾生的入学限制。各高校都在以专业为单位,研究放宽标准的可能性。鉴于我过高校资源(尤其是优质资源)的紧缺,同等条件下各高校当然对身体健康的考生优先录取。身体健康方面有缺陷的考生要掌握以下四条原则:

处于传染期的传染病患者应主动放弃报考,安心养病。

近视超过800度、色盲、色弱患者应避免体检标准中限考的专业。

肢体残疾或生活不能自理者要主动降低求学层次,以高分优势换取身体方面的劣势。

尽量在志愿填报前向有关高校了解情况,了解高校意向,增加 保险 系数。

4.往届生的报考

虽然近几年高考录取率稳步提高,但考生对名校和热门专业的追求趋甚。牵强服从的学子宁愿选择复读,也不愿俯就。国家对往届生并不歧视,但也不会鼓励这种现象的发生,因为日见减低的高校报到率已经严重影响了高教资源的合理利用。在过内高校,往届生的录取往往是“同等滞后”,因为他们的复习深化时间比应届生多得多。根据以上分析,往届生填报志愿不能满打满算,宜适当减低理想值,以求一次中的。

2022年新高考2卷数学试题及答案相关 文章 :

★ 2022全国乙卷高考数学(理科)试题及答案

★ 2022北京高考数学(文科)试题及答案

★ 2022年新高考全国二卷物理试卷及答案解析

★ 2022新高考数学Ⅰ卷试卷及参考答案

★ 2022年高考全国乙卷(理科)数学科目题目与答案解析

★ 2022全国乙卷理科数学真题及答案解析

★ 2022年全国高考北京卷数学科目考试真题

★ 2022年高考数学卷真题及答案解析(全国新高考1卷)

★ 新高考全国一卷2022年数学试卷及答案解析

★ 2022高考全国乙卷试题及答案(理科)

试题与答案

数学试题(文科)

第Ⅰ卷 选择题(共50分)

一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的(本大题共10小题,每小题5分,共50分)

1.已知集合 , ,则 =( A )

A. B.

C. D.

2.若复数 ( , 为虚数单位位)是纯虚数,则实数 的值为( )

A.6 B.-2 C.4 D.-6

3.已知 ,则“ ”是“ ”的 ( B )

A.充分不必要条件 B.必要不充分条件

C.充要条件 D.既不充分也不必要条件

4.已知点P(x,y)在不等式组 表示的平面区域上运动,

则z=x-y的取值范围是( )

A.[-2,-1] B.[-1,2] C.[-2,1] D.[1,2]

5.双曲线 的离心率为2,有一个焦点与抛物线 的焦点重合,则mn的值为( )

A. B. C. D.

一年级 二年级 三年级

女生 373

男生 377 370

6.某校共有学生2000名,各年级男、女生人数如表所示.已知在全校学生中随机抽取1名,抽到二年级女生的概率是0.19.现用分层抽样的方法在全校抽取64名学生,则应在三年级抽取的

学生人数为( )

A.24 B.18 C.16 D.12

7.平面向量 =( )

A.1 B.2 C.3 D.

8.在等差数列 中,已知 ,那么 的值为( )

A.-30 B.15 C.-60 D.-15

9.设 、 为两个不同的平面,l、m为两条不同的直线,且l ,m ,有如下的两个命题:①若 ‖ ,则l‖m;②若l⊥m,则 ⊥ .那么( )

A.①是真命题,②是假命题 B.①是假命题,②是真命题

C.①②都是真命题 D.①②都是假命题

10.已知一个几何体的三视图如所示,则该几何体的体积为( )

A.6 B.5.5

C.5 D.4.5

第Ⅱ卷 非选择题(共100分)

二、填空题:本大题共7小题,考生作答5小题,每小题5分,满分25分.

(一)必做题(11~14题)

11.已知 ,且 是第二象限的角,

则 ___________.

12.执行右边的程序框图,若 =12, 则输

出的 = ;

13.函数 若

则 的值为: ;

14.圆 上的点到直线 的最大距离与最小距离之差是: _____________.

(二)选做题(15~17题,考生只能从中选做一题)

15.(选修4—4坐标系与参数方程)曲线 与曲线 的位置关系是: (填“相交”、 “相切”或“相离”) ;

16.(选修4—5 不等式选讲)不等式 的解集是: ;

17.(选修4—1 几何证明选讲)已知 是圆 的切线,切点为 , . 是圆 的直径, 与圆 交于点 , ,则圆 的半径 .

三、解答题:解答应写出文字说明,证明过程或演算步骤(本答题共6小题,共75分)

18.(本小题12分)

已知向量 , ,设 .

(1).求 的值;

(2).当 时,求函数 的值域。

19.(本小题12分)

已知函数 .

(1)若 从集合 中任取一个元素, 从集合 中任取一个元素,

求方程 有两个不相等实根的概率;

(2)若 从区间 中任取一个数, 从区间 中任取一个数,求方程 没有实根的概率.

20.(本小题12分)

在平面直角坐标系xoy中,已知四点 A(2,0), B(-2,0), C(0,-2),D(-2,-2),把坐标系平面沿y轴折为直二面角.

(1)求证:BC⊥AD;

(2)求三棱锥C—AOD的体积.

21.(本小题12分)

已知数列 的前n项和为 , 且满足 ,

(1) 求 的值;

(2) 求证:数列 是等比数列;

(3) 若 , 求数列 的前n项和 .

22、(本小题13分)

已知函数 在点 处的切线方程为 .

(1)求 的值;

(2)求函数 的单调区间;

(3)求函数 的值域.

23.(本小题14分)已知椭圆 两焦点分别为F1、F2,P是椭圆在第一象限弧上一点,并满足 =1,过P作倾斜角互补的两条直线PA、PB分别交椭圆于A、B两点.

(1)求P点坐标;

(2)求直线AB的斜率;

(3)求△PAB面积的最大值.

文科数学参考答案与评分标准

一、选择题:

A卷选择题答案

题号 1 2 3 4 5 6 7 8 9 10

答案 A D A B D C B A D C

B卷选择题答案

题号 1 2 3 4 5 6 7 8 9 10

答案

二、填空题:

(一)必做题

11. ; 12.4.; 13.1或 ; 14. .

(二)选做题

15.相交;16. ;17. .

三、解答题:

18.解: =

=

= ……………………………………(4分)

(1)

= …………………………(8分)

(2)当 时, ,

∴ ………………………(12分)

19.解:(1)a取集合{0,1,2,3}中任一元素,b取集合{0,1,2}中任一元素

∴a、b的取值情况有(0,0),(0,1)(0,2)(1,0)(1,1)(1,2)(2,0),

(2,1),(2,2),(3,0)(3,1)(3,2)其中第一个数表示a的取值,第二个数表示b的取值,基本事件总数为12.

设“方程 有两个不相等的实根”为事件A,

当 时方程 有两个不相等实根的充要条件为

当 时, 的取值有(1,0)(2,0)(2,1)(3,0)(3,1)(3,2)

即A包含的基本事件数为6.

∴方程 有两个不相等的实根的概率

……………………………………………………(6分)

(2)∵a从区间〔0,2〕中任取一个数,b从区间〔0,3〕中任取一个数

则试验的全部结果构成区域

这是一个矩形区域,其面积

设“方程 没有实根”为事件B

则事件B构成的区域为

即图中阴影部分的梯形,其面积

由几何概型的概率计算公式可得方程 没有实根的概率

………………………………………………(12分)

20.解法一:(1)∵BOCD为正方形,

∴BC⊥OD, ∠AOB为二面角B-CO-A的平面角

∴AO⊥BO ∵AO⊥CO 且BO∩CO=O

∴AO⊥平面BCO 又∵

∴AO⊥BC 且DO∩AO=O ∴BC⊥平面ADO

∴BC⊥AD …………(6分)

(2) …………………………(12分)

21.解:(1)因为 ,令 , 解得 ……1分

再分别令 ,解得 ……………………………3分

(2)因为 ,

所以 ,

两个代数式相减得到 ……………………………5分

所以 ,

又因为 ,所以 构成首项为2, 公比为2的等比数列…7分

(3)因为 构成首项为2, 公比为2的等比数列

所以 ,所以 ……………………………8分

因为 ,所以

所以

因此 ……………………………11分

所以 ………………………12分

22.解:(1)

∵ 在点 处的切线方程为 .

∴ …………………………(5)

(2)由(1)知: ,

x

2

+ 0 — 0 +

极大

极小

∴ 的单调递增区间是: 和

的单调递减区间是: ………………………………(9)

(3)由(2)知:当x= -1时, 取最小值

当x= 2时, 取最大值

且当 时, ;又当x<0时, ,

所以 的值域为 ………………………………………(13)

23.解:(1) , ,设

则 ,

又 , ,∴ ,即所求 ……(5分)

(2)设 : 联立

得:

∵ ,∴ ,

同理 , ∴ ……(10分)

(3)设 : ,联立

,得: ,∴

∴|AB|=

∴S=

当且仅当m=±2时等号成立。…………………………………(14分)

文章标签: # 考生 # 高校 # 高考