您现在的位置是: 首页 > 教育资讯 教育资讯

数学高考类型题_高考数学题型全归纳知乎

tamoadmin 2024-07-18 人已围观

简介1.高考文科数学哪些类型大题必须准备好啊?老师指教2.今年高考数学问题3.高三文科数学常考题型归纳4.高考数学常考题型答题技巧与方法有哪些5.2021新高考数学大题必考题型有哪些6.今年安徽数学高考题难吗7.全国卷高考数学的大题是什么的结构。 就是每个题的范围。8.高考数学空间几何 概率大题类型 普通高中学校招生全国统一考试,是为普通高等学校招生设置的全国性统一考试,一般是每年6月7日-8日考试。

1.高考文科数学哪些类型大题必须准备好啊?老师指教

2.今年高考数学问题

3.高三文科数学常考题型归纳

4.高考数学常考题型答题技巧与方法有哪些

5.2021新高考数学大题必考题型有哪些

6.今年安徽数学高考题难吗

7.全国卷高考数学的大题是什么的结构。 就是每个题的范围。

8.高考数学空间几何 概率大题类型

数学高考类型题_高考数学题型全归纳知乎

普通高中学校招生全国统一考试,是为普通高等学校招生设置的全国性统一考试,一般是每年6月7日-8日考试。 参加考试的对象一般是全日制普通高中 毕业 生和具有同等学历的中华人民共和国公民,下面是我整理的关于2022高考数学大题题型 总结 ,欢迎阅读!

2022高考数学大题题型总结

一、三角函数或数列

数列是高考必考的内容之一。高考对这个知识点的考查非常全面。每年都会有等差数列,等比数列的考题,而且经常以综合题出现,也就是说把数列知识和指数函数、对数函数和不等式等其他知识点综合起来。

近几年来,关于数列方面的考题题主要包含以下几个方面:

(1)数列基本知识考查,主要包括基本的等差数列和等比数列概念以及通项公式和求和公式。

(2)把数列知识和其他知识点相结合,主要包括数列知识和函数、方程、不等式、三角、几何等其他知识相结合。

(3)应用题中的数列问题,一般是以增长率问题出现。

二、立体几何

高考立体几何试题一般共有4道(选择、填空题3道,解答题1道),共计总分27分左右,考查的知识点在20个以内。选择填空题考核立几中的计算型问题,而解答题着重考查立几中的逻辑推理型问题,当然,二者均应以正确的空间想象为前提。随着新的课程改革的进一步实施,立体几何考题正朝着多一点思考,少一点计算的发展。从历年的考题变化看,以简单几何体为载体的线面位置关系的论证,角与距离的探求是常考常新的热门话题。

三、统计与概率

1.掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题。

2.理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题。

3.理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题。

4.掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题。

5.了解随机的发生存在着规律性和随机概率的意义。

6.了解等可能件的概率的意义,会用排列组合的基本公式计算一些等可能件的概率。

7.了解互斥、相互独立的意义,会用互斥的概率加法公式与相互独立的概率乘法公式计算一些的概率。

8.会计算在n次独立重复试验中恰好发生k次的概率.

四、解析几何(圆锥曲线)

高考解析几何剖析:

1、很多高考问题都是以平面上的点、直线、曲线(如圆、椭圆、抛物线、双曲线)这三大类几何元素为基础构成的图形的问题;

2、演绎规则就是代数的演绎规则,或者说就是列方程、解方程的规则。

有了以上两点认识,我们可以毫不犹豫地下这么一个结论,那就是解决高考解析几何问题无外乎做两项工作:

(1)、几何问题代数化。

(2)、用代数规则对代数化后的问题进行处理。

五、函数与导数

导数是微积分的初步知识,是研究函数,解决实际问题的有力工具。在高中阶段对于导数的学习,主要是以下几个方面:

1.导数的常规问题:

(1)刻画函数(比初等 方法 精确细微);

(2)同几何中切线联系(导数方法可用于研究平面曲线的切线);

(3)应用问题(初等方法往往技巧性要求较高,而导数方法显得简便)等关于次多项式的导数问题属于较难类型。

2.关于函数特征,最值问题较多,所以有必要专项讨论,导数法求最值要比初等方法快捷简便。

3.导数与解析几何或函数图象的混合问题是一种重要类型,也是高考中考察综合能力的一个方向,应引起注意。

高考数学题型特点和答题技巧

1.选择题——“不择手段”

题型特点:

(1)概念性强:数学中的每个术语、符号,乃至习惯用语,往往都有明确具体的含义,这个特点反映到选择题中,表现出来的就是试题的概念性强,试题的陈述和信息的传递,都是以数学的学科规定与习惯为依据,决不标新立异。

(2)量化突出:数量关系的研究是数学的一个重要的组成部分,也是数学考试中一项主要的内容,在高考的数学选择题中,定量型的试题所占的比重很大,而且许多从形式上看为计算定量型选择题,其实不是简单或机械的计算问题,其中往往蕴含了对概念、原理、性质和法则的考查,把这种考查与定量计算紧密地结合在一起,形成了量化突出的试题特点。

(3)充满思辨性:这个特点源于数学的高度抽象性、系统性和逻辑性。作为数学选择题,尤其是用于选择性考试的高考数学试题,只凭简单计算或直观感知便能正确作答的试题不多,几乎可以说并不存在,绝大多数的选择题,为了正确作答,或多或少总是要求考生具备一定的观察、分析和逻辑推断能力。思辨性的要求充满题目的字里行间。

(4)形数兼备:数学的研究对象不仅是数,还有图形,而且对数和图形的讨论与研究,不是孤立开来分割进行,而是有分有合,将它们辩证统一起来。这个特色在高中数学中已经得到充分的显露。因此,在高考的数学选择题中,便反映出形数兼备这一特点,其表现是几何选择题中常常隐藏着代数问题,而代数选择题中往往又寓有几何图形的问题。因此,数形结合与形数分离的解题方法是高考数学选择题的一种重要且有效的思想方法与解题方法。

(5)解法多样化:以其他学科比较,“一题多解”的现象在数学中表现突出,尤其是数学选择题由于它有备选项,给试题的解答提供了丰富的有用信息,有相当大的提示性,为解题活动展现了广阔的天地,大大地增加了解答的途径和方法。常常潜藏着极其巧妙的解法,有利于对考生思维深度的考查。

解题策略:

(1)注意审题。把题目多读几遍,弄清这个题目求什么,已知什么,求、知之间有什么关系,把题目搞清楚了再动手答题。

(2)答题顺序不一定按题号进行。可先从自己熟悉的题目答起,从有把握的题目入手,使自己尽快进入到解题状态,产生解题的和欲望,再解答陌生或不太熟悉的题目。若有时间,再去拼那些把握不大或无从下手的题。这样也许能超水平发挥。

(3)数学选择题大约有70%的题目都是直接法,要注意对符号、概念、公式、定理及性质等的理解和使用,例如函数的性质、数列的性质就是常见题目。

(4)挖掘隐含条件,注意易错易混点,例如集合中的空集、函数的定义域、应用性问题的限制条件等。

(5)方法多样,不择手段。高考试题凸现能力,小题要小做,注意巧解,善于使用数形结合、特值(含特殊值、特殊位置、特殊图形)、排除、验证、转化、分析、估算、极限等方法,一旦思路清晰,就迅速作答。不要在一两个小题上纠缠,杜绝小题大做,如果确实没有思路,也要坚定信心,“题可以不会,但是要做对”,即使是“蒙”也有25%的胜率。

(6)控制时间。一般不要超过40分钟,最好是25分钟左右完成选择题,争取又快又准,为后面的解答题留下充裕的时间,防止“超时失分”。

2.填空题——“直扑结果”

题型特点:

填空题和选择题同属客观性试题,它们有许多共同特点:其形态短小精悍,考查目标集中,答案简短、明确、具体,不必填写解答过程,评分客观、公正、准确等等,不过填空题和选择题也有质的区别。首先,表现为填空题没有备选项,因此,解答时既有不受诱误的干扰之好处,又有缺乏提示的帮助之不足。对考生独立思考和求解,在能力要求上会高一些。长期以来,填空题的答对率一直低于选择题的答对率,也许这就是一个重要的原因。其次,填空题的解构,往往是在一个正确的命题或断言中,抽去其中的一些内容(即可以使条件,也可以是结论),留下空位,让考生独立填上,考查方法比较灵活,在对题目的阅读理解上,较之选择题有时会显得较为费劲。当然并非常常如此,这将取决于命题者对试题的设计意图。

填空题的考点少,目标集中。否则,试题的区分度差,其考试的信度和效度都难以得到保证。这是因为:填空题要是考点多,解答过程长,影响结论的因素多,那么对于答错的考生便难以知道其出错的真正原因,有的可能是一窍不通,入手就错了;有的可能只是到了最后一步才出错,但他们在答卷上表现出来的情况一样,得相同的成绩,尽管他们的水平存在很大的差异。

解题策略:

由于填空题和选择题有相似之处,所以有些解题策略是可以共用的,在此不再多讲,只针对不同的特征给几条建议:

一是填空题绝大多数是计算型(尤其是推理计算型)和概念(或性质)判断性的试题,应答时必须按规则进行切实的计算或合乎逻辑的推演和判断;

二是作答的结果必须是数值准确,形式规范,例如集合形式的表示、函数表达式的完整等,结果稍有毛病便是零分;

三是《考试说明》中对解答填空题提出的要求是“正确、合理、迅速”,因此,解答的基本策略是:快——运算要快,力戒小题大做;稳——变形要稳,防止操之过急;全——答案要全,避免对而不全;活——解题要活,不要生搬硬套;细——审题要细,不能粗心大意。

3.解答题——“步步为营”

题型特点:

解答题与填空题比较,同居提供型的试题,但也有本质的区别。

首先,解答题应答时,考生不仅要提供出最后的结论,还得写出或说出解答过程的主要步骤,提供合理、合法的说明,填空题则无此要求,只要填写结果,省略过程,而且所填结果应力求简练、概括的准确;

其次,试题内涵解答题比起填空题要丰富得多,解答题的考点相对较多,综合性强,难度较高,解答题成绩的评定不仅看最后的结论,还要看其推演和论证过程,分情况判定分数,用以反映其差别,因而解答题命题的自由度较之填空题大得多。

评分办法:

数学高考阅卷评分实行懂多少知识给多少分的评分办法,叫做“分段评分”。而考生“分段得分”的基本策略是:会做的题目力求不失分,部分理解的题目力争多得分。会做的题目若不注意准确表达和规范书写,常常会被“分段扣分”,有阅卷 经验 的老师告诉我们,解答立体几何题时,用向量方法处理的往往扣分少。

解答题阅卷的评分原则一般是:第一问,错或未做,而第二问对,则第二问得分全给;前面错引起后面方法用对但结果出错,则后面给一半分。

解题策略:

(1)常见失分因素:

①对题意缺乏正确的理解,应做到慢审题快做题;

②公式记忆不牢,考前一定要熟悉公式、定理、性质等;

③思维不严谨,不要忽视易错点;

④解题步骤不规范,一定要按课本要求,否则会因不规范答题失分,避免“对而不全”如解概率题,要给出适当的文字说明,不能只列几个式子或单纯的结论,表达不规范、字迹不工整等非智力因素会影响阅卷老师的“感情分”;

⑤计算能力差失分多,会做的一定不能放过,不能一味求快,例如平面解析中的圆锥曲线问题就要求较强的运算能力;

⑥轻易放弃试题,难题不会做,可分解成小问题,分步解决,如最起码能将文字语言翻译成符号语言、设应用题未知数、设轨迹的动点坐标等,都能拿分。也许随着这些小步骤的罗列,还能悟出解题的灵感。

(2)何为“分段得分”:

对于同一道题目,有的人理解的深,有的人理解的浅;有的人解决的多,有的人解决的少。为了区分这种情况,高考的阅卷评分办法是懂多少知识就给多少分。这种方法我们叫它“分段评分”,或者“踩点给分”——踩上知识点就得分,踩得多就多得分。与之对应的“分段得分”的基本精神是,会做的题目力求不失分,部分理解的题目力争多得分。

对于会做的题目,要解决“会而不对,对而不全”这个老大难问题。

有的考生拿到题目,明明会做,但最终答案却是错的———会而不对。

有的考生答案虽然对,但中间有逻辑缺陷或概念错误,或缺少关键步骤———对而不全。

因此,会做的题目要特别注意表达的准确、考虑的周密、书写的规范、语言的科学,防止被“分段扣分”。经验表明,对于考生会做的题目,阅卷老师则更注意找其中的合理成分,分段给点分,所以“做不出来的题目得一二分易,做得出来的题目得满分难”。

对绝大多数考生来说,更为重要的是如何从拿不下来的题目中分段得点分。我们说,有什么样的解题策略,就有什么样的得分策略。把你解题的真实过程原原本本写出来,就是“分段得分”的全部秘密。

①缺步解答:如果遇到一个很困难的问题,确实啃不动,一个聪明的解题策略是,将它们分解为一系列的步骤,或者是一个个小问题,先解决问题的一部分,能解决多少就解决多少,能演算几步就写几步,尚未成功不等于失败。特别是那些解题层次明显的题目,或者是已经程序化了的方法,每一步得分点的演算都可以得分,最后结论虽然未得出,但分数却已过半,这叫“大题拿小分”。

②跳步答题:解题过程卡在某一过渡环节上是常见的。这时,我们可以先承认中间结论,往后推,看能否得到结论。

如果不能,说明这个途径不对,立即改变方向;

如果能得出预期结论,就回过头来,集中力量攻克这一“卡壳处”。

由于考试时间的限制,“卡壳处”的攻克如果来不及了,就可以把前面的写下来,再写出“证实某步之后,继续有……”一直做到底。也许,后来中间步骤又想出来,这时不要乱七八糟插上去,可补在后面。若题目有两问,第一问想不出来,可把第一问作“已知”,先做第二问,这也是跳步解答。

③退步解答:“以退求进”是一个重要的解题策略。如果你不能解决所提出的问题,那么,你可以从一般退到特殊,从抽象退到具体,从复杂退到简单,从整体退到部分,从较强的结论退到较弱的结论。总之,退到一个你能够解决的问题。为了不产生“以偏概全”的误解,应开门见山写上“本题分几种情况”。这样,还会为寻找正确的、一般性的解法提供有意义的启发。

④解答:一道题目的完整解答,既有主要的实质性的步骤,也有次要的性的步骤。实质性的步骤未找到之前,找性的步骤是明智之举。

如:准确作图,把题目中的条件翻译成数学表达式,设应用题的未知数等。答卷中要做到稳扎稳打,字字有据,步步准确,尽量一次成功,提高成功率。试题做完后要认真做好解后检查,看是否有空题,答卷是否准确,所写字母与题中图形上的是否一致,格式是否规范,尤其是要审查字母、符号是否抄错,在确信万无一失后方可交卷。

(3)能力不同,要求有变:

由于考生的层次不同,面对同一张数学卷,要尽可能发挥自己的水平,考试策略也有所不同。

针对基础较差、以二类本科为最高目标的考生而言要“以稳取胜”——这类考生除了知识方面的缺陷外,“会而不对,对而不全”是这类考生的致命伤。丢分的主要原因在于审题失误和计算失误。考试时要克服急躁心态,如果发现做不下去,就尽早放弃,把时间用于检查已做的题,或回头再做前面没做的题。记住,只要把你会做的题都做对,你就是最成功的人!

针对二本及部分一本的同学而言要“以准取胜”——他们基础比较扎实,但也会犯低级错误,所以,考试时要做到准确无误(指会做的题目),除了最后两题的第三问不一定能做出,其他题目大都在“火力范围”内。但前面可能遇到“拦路虎”,要敢于放弃,把会做的题做得准确无误,再回来“打虎”。

针对第一志愿为名牌大学的考试而言要“以新取胜”——这些考生的主攻方向是能力型试题,在快速、正确做好常规试题的前提下,集中精力做好能力题。这些试题往往思考强度大,运算要求高,解题需要新的思想和方法,要灵活把握,见机行事。如果遇到不顺手的试题,也不必恐慌,可能是试题较难,大家都一样,此时,使会做的题不丢分就是上策。

高中数学答题技巧

(1)填写好全部考生信息,检查试卷有无问题;

(2)调节情绪,尽快进入考试状态,可解答那些一眼就能看得出结论的简单选择或填空题(一旦解出,信心倍增,情绪立即稳定);

(3)对于不能立即作答的题目,可一边通览,一边粗略地分为A、B两类:A类指题型比较熟悉、容易上手的题目;B类指题型比较陌生、自我感觉有困难的题目,做到心中有数。

2022高考数学大题题型总结_数学大题题型相关 文章 :

★ 高考数学答题技巧方法及易错知识点

★ 做好高考数学题的方法技巧有哪些

★ 2022高三数学学习方法总结

★ 2022年高考数学前十天如何复习最有效

★ 高三数学二轮复习策略2022

★ 高考数学知识点最新归纳

★ 2022高三数学知识点整理

★ 2022年高三数学第二轮复习方法

★ 2022年高考复习技巧及方法(最新)

★ 高三数学知识点总结框架

高考文科数学哪些类型大题必须准备好啊?老师指教

解答高考选择题既要求准确破解,又要快速选择,正如高冠教育(ggedu21)明确指出的,应“多一点想的,少一点算的”。我们都会有算错的时候,怎样才不会算错呢?“不算就不会算错” 因此,在解答时应该突出一个"选"字,尽量减少书写解题过程,在对照选择支的同时,多方考虑间接解法,依据题目的具体特点,灵活、巧妙、快速地选择解法,以便快速智取。我们不要给任何“方法”做出限定,重要的是这种解答的思想方式。

一、高考数学选择题命题规律如下:

1、函数与导数

2—3个小题,1个大题,客观题主要以考查函数的基本性质、函数图像及变换、函数零点、导数的几何意义、定积分等为主,也有可能与不等式等知识综合考查;解答题主要是以导数为工具解决函数、方程、不等式等的应用问题。

2.三角函数与平面向量

小题一般主要考查三角函数的图像与性质、利用诱导公式与和差角公式、倍角公式、正余弦定理求值化简、平面向量的基本性质与运算.大题主要以正、余弦定理为知识框架,以三角形为依托进行考查(注意在实际问题中的考查)或向量与三角结合考查三角函数化简求值以及图像与性质.另外向量也可能与解析等知识结合考查.

3.数列

2个小题或1个大题,小题以考查数列概念、性质、通项公式、前n项和公式等内容为主,属中低档题;解答题以考查等差(比)数列通项公式、求和公式,错位相减求和、简单递推为主.

4.解析几何

2小1大,小题一般主要以考查直线、圆及圆锥曲线的性质为主,一般结合定义,借助于图形可容易求解,大题一般以直线与圆锥曲线位置关系为命题背景,并结合函数、方程、数列、不等式、导数、平面向量等知识,考查求轨迹方程问题,探求有关曲线性质,求参数范围,求最值与定值,探求存在性等问题.另外要注意对二次曲线之间结合的考查,比如椭圆与抛物线,椭圆与圆等.

5.立体几何

2小1大,小题必考三视图,一般侧重于线与线、线与面、面与面的位置的关系以及空间几何体中的空间角、距离、面积、体积的计算的考查,另外特别注意对球的组合体的考查.解答题以平行、垂直、夹角、距离等为考查目标.几何体以四棱柱、四棱锥、三棱柱、三棱锥等为主。

6.概率与统计

2小1大,小题一般主要考查频率分布直方图、茎叶图、样本的数字特征、独立性检验、几何概型和古典概型、抽样(特别是分层抽样)、排列组合、二项式定理第几个重要的分布.解答题考查点比较固定,一般考查离散型随机变量的分布列、期望和方差.仍然侧重于考查与现实生活联系紧密的应用题,体现数学的应用性.

7.不等式

小题一般考查不等式的基本性质及解法(一般与其他知识联系,比如集合、分段函数等)、基本不等式性质应用、线性规划;解答题一般以其他知识(比如数列、解析几何及函数等)为主要背景,不等式为工具进行综合考查,一般较难。

8.算法与推理

程序框图每年出现一个,一般与函数、数列等知识结合,难度一般;推理题偶尔会出现一个。

二、高考数学选择题6大答题技巧

答题口诀:

(1)、小题不能大做

(2)、不要不管选项

(3)、能定性分析就不要定量计算

(4)、能特值法就不要常规计算

(5)、能间接解就不要直接解

(6)、能排除的先排除缩小选择范围

(7)、分析计算一半后直接选选项

(8)、三个相似选相似

1、特殊值法

方法思想:通过取特值的方式提高解题速度,题中的一般情况必须满足我们取值的特殊情况,因而我们根据题意选取适当的特值帮助我们排除错误答案,选取正确选项。

2、估算法

方法思想:当选项差距较大,且没有合适的解题思路时我们可以通过适当的放大或者缩小部分数据估算出答案的大概范围或者近似值,然后选取与估算值最接近的选项。

[注意]:带根号比较大小或者寻找近似值时要平方去比较这样可以减少误差。

3、逆代法

方法思想:充分发挥选项的作用,观察选项特点,制定解题的特殊方案,可以大大的简化解题步骤,节省时间,做选择题我们切记不要不管选项.

4、特殊情况分析法

方法思想:当题中没有限定情况时,我们考虑问题可以从最特殊的情况开始分析,特殊情况往往可以帮助我们排除部分选项,然后分析从特殊情况到一般情况的[过度](变大、变小)等选出正确答案。

5、算法简化

方法思想:定性分析代替定量计算,根据题型结构简化计算过程,在一定程度上帮助我们加快了解题速度。

通过下面几个例题的讲解,我们不仅要掌握方法,更重要的是要去体会这种思想,做到活学活用。

6、特殊推论

今年高考数学问题

综合多数省份的命题情况, 大题一般分布在:

1. 三角————三角函数或解三角形;

2. 立体几何证明————平行或垂直,求体积;

3. 统计与概率————频率直方图和简单的古典概率;

4. 数列————等差数列、等比数列的通项公式,数列求和方法,侧重计算;

5.导数————研究曲线的切线,研究函数的单调性和极值、最值、零点等性质;

6.圆锥曲线————求曲线的方程,研究直线和圆锥曲线相交的问题——弦长、中点、面积、定点、定值、最值等问题。

高三文科数学常考题型归纳

高中数学重点知识与结论分类解析

一、集合与简易逻辑

1.集合的元素具有确定性、无序性和互异性.

2.对集合 , 时,必须注意到“极端”情况: 或 ;求集合的子集时是否注意到 是任何集合的子集、 是任何非空集合的真子集.

3.对于含有 个元素的有限集合 ,其子集、真子集、非空子集、非空真子集的个数依次为

4.“交的补等于补的并,即 ”;“并的补等于补的交,即 ”.

5.判断命题的真 关键是“抓住关联字词”;注意:“不‘或’即‘且’,不‘且’即‘或’”.

6.“或命题”的真特点是“一真即真,要全”;“且命题”的真特点是“一即,要真全真”;“非命题”的真特点是“一真一”.

7.四种命题中“‘逆’者‘交换’也”、“‘否’者‘否定’也”.

原命题等价于逆否命题,但原命题与逆命题、否命题都不等价.反证法分为三步:设、推矛、得果.

注意:命题的否定是“命题的非命题,也就是‘条件不变,仅否定结论’所得命题”,但否命题是“既否定原命题的条件作为条件,又否定原命题的结论作为结论的所得命题” ?.

8.充要条件

二、函 数

1.指数式、对数式, , ,

, , , , , , .

2.(1)映射是“‘全部射出’加‘一箭一雕’”;映射中第一个集合 中的元素必有像,但第二个集合 中的元素不一定有原像( 中元素的像有且仅有下一个,但 中元素的原像可能没有,也可任意个);函数是“非空数集上的映射”,其中“值域是映射中像集 的子集”.

(2)函数图像与 轴垂线至多一个公共点,但与 轴垂线的公共点可能没有,也可任意个.

(3)函数图像一定是坐标系中的曲线,但坐标系中的曲线不一定能成为函数图像.

3.单调性和奇偶性

(1)奇函数在关于原点对称的区间上若有单调性,则其单调性完全相同.

偶函数在关于原点对称的区间上若有单调性,则其单调性恰恰相反.

注意:(1)确定函数的奇偶性,务必先判定函数定义域是否关于原点对称.确定函数奇偶性的常用方法有:定义法、图像法等等.对于偶函数而言有: .

(2)若奇函数定义域中有0,则必有 .即 的定义域时, 是 为奇函数的必要非充分条件.

(3)确定函数的单调性或单调区间,在解答题中常用:定义法(取值、作差、鉴定)、导数法;在选择、填空题中还有:数形结合法(图像法)、特殊值法等等.

(4)既奇又偶函数有无穷多个( ,定义域是关于原点对称的任意一个数集).

(7)复合函数的单调性特点是:“同性得增,增必同性;异性得减,减必异性”.

复合函数的奇偶性特点是:“内偶则偶,内奇同外”.复合函数要考虑定义域的变化。(即复合有意义)

4.对称性与周期性(以下结论要消化吸收,不可强记)

(1)函数 与函数 的图像关于直线 ( 轴)对称.

推广一:如果函数 对于一切 ,都有 成立,那么 的图像关于直线 (由“ 和的一半 确定”)对称.

推广二:函数 , 的图像关于直线 (由 确定)对称.

(2)函数 与函数 的图像关于直线 ( 轴)对称.

(3)函数 与函数 的图像关于坐标原点中心对称.

推广:曲线 关于直线 的对称曲线是 ;

曲线 关于直线 的对称曲线是 .

(5)类比“三角函数图像”得:若 图像有两条对称轴 ,则 必是周期函数,且一周期为 .

如果 是R上的周期函数,且一个周期为 ,那么 .

特别:若 恒成立,则 .若 恒成立,则 .若 恒成立,则 .

三、数  列

1.数列的通项、数列项的项数,递推公式与递推数列,数列的通项与数列的前 项和公式的关系: (必要时请分类讨论).

注意: ; .

2.等差数列 中:

(1)等差数列公差的取值与等差数列的单调性.

(2) ; .

(3) 、 也成等差数列.

(4)两等差数列对应项和(差)组成的新数列仍成等差数列.

(5) 仍成等差数列.

(6) , , , , .

(7) ; ; .

(8)“首正”的递减等差数列中,前 项和的最大值是所有非负项之和;

“首负”的递增等差数列中,前 项和的最小值是所有非正项之和;

(9)有限等差数列中,奇数项和与偶数项和的存在必然联系,由数列的总项数是偶数还是奇数决定.若总项数为偶数,则“偶数项和”-“奇数项和”=总项数的一半与其公差的积;若总项数为奇数,则“奇数项和”-“偶数项和”=此数列的中项.

(10)两数的等差中项惟一存在.在遇到三数或四数成等差数列时,常考虑选用“中项关系”转化求解.

(11)判定数列是否是等差数列的主要方法有:定义法、中项法、通项法、和式法、图像法(也就是说数列是等差数列的充要条件主要有这五种形式).

3.等比数列 中:

(1)等比数列的符号特征(全正或全负或一正一负),等比数列的首项、公比与等比数列的单调性.

(2) ; .

(3) 、 、 成等比数列; 成等比数列 成等比数列.

(4)两等比数列对应项积(商)组成的新数列仍成等比数列.

(5) 成等比数列.

(6) .

特别: .

(7) .

(8)“首大于1”的正值递减等比数列中,前 项积的最大值是所有大于或等于1的项的积;“首小于1”的正值递增等比数列中,前 项积的最小值是所有小于或等于1的项的积;

(9)有限等比数列中,奇数项和与偶数项和的存在必然联系,由数列的总项数是偶数还是奇数决定.若总项数为偶数,则“偶数项和”=“奇数项和”与“公比”的积;若总项数为奇数,则“奇数项和”=“首项”加上“公比”与“偶数项和”积的和.

(10)并非任何两数总有等比中项.仅当实数 同号时,实数 存在等比中项.对同号两实数 的等比中项不仅存在,而且有一对 .也就是说,两实数要么没有等比中项(非同号时),如果有,必有一对(同号时).在遇到三数或四数成等差数列时,常优先考虑选用“中项关系”转化求解.

(11)判定数列是否是等比数列的方法主要有:定义法、中项法、通项法、和式法(也就是说数列是等比数列的充要条件主要有这四种形式).

4.等差数列与等比数列的联系

(1)如果数列 成等差数列,那么数列 ( 总有意义)必成等比数列.

(2)如果数列 成等比数列,那么数列 必成等差数列.

(3)如果数列 既成等差数列又成等比数列,那么数列 是非零常数数列;但数列 是常数数列仅是数列既成等差数列又成等比数列的必要非充分条件.

(4)如果两等差数列有公共项,那么由他们的公共项顺次组成的新数列也是等差数列,且新等差数列的公差是原两等差数列公差的最小公倍数.

如果一个等差数列与一个等比数列有公共项顺次组成新数列,那么常选用“由特殊到一般的方法”进行研讨,且以其等比数列的项为主,探求等比数列中那些项是他们的公共项,并构成新的数列.

注意:(1)公共项仅是公共的项,其项数不一定相同,即研究 .但也有少数问题中研究 ,这时既要求项相同,也要求项数相同.(2)三(四)个数成等差(比)的中项转化和通项转化法.

5.数列求和的常用方法:

(1)公式法:①等差数列求和公式(三种形式),

②等比数列求和公式(三种形式),

③ , , , .

(2)分组求和法:在直接运用公式法求和有困难时,常将“和式”中“同类项”先合并在一起,再运用公式法求和.

(3)倒序相加法:在数列求和中,若和式中到首尾距离相等的两项和有其共性或数列的通项与组合数相关联,则常可考虑选用倒序相加法,发挥其共性的作用求和(这也是等差数列前 和公式的推导方法).

(4)错位相减法:如果数列的通项是由一个等差数列的通项与一个等比数列的通项相乘构成,那么常选用错位相减法,将其和转化为“一个新的的等比数列的和”求解(注意:一般错位相减后,其中“新等比数列的项数是原数列的项数减一的差”!)(这也是等比数列前 和公式的推导方法之一).

(5)裂项相消法:如果数列的通项可“分裂成两项差”的形式,且相邻项分裂后相关联,那么常选用裂项相消法求和.常用裂项形式有:

① ,

② ,

特别声明:?运用等比数列求和公式,务必检查其公比与1的关系,必要时分类讨论.

(6)通项转换法。

四、三角函数

1. 终边与 终边相同( 的终边在 终边所在射线上) .

终边与 终边共线( 的终边在 终边所在直线上) .

终边与 终边关于 轴对称 .

终边与 终边关于 轴对称 .

终边与 终边关于原点对称 .

一般地: 终边与 终边关于角 的终边对称 .

与 的终边关系由“两等分各象限、一二三四”确定.

2.弧长公式: ,扇形面积公式: ,1弧度(1rad) .

3.三角函数符号特征是:一是全正、二正弦正、三是切正、四余弦正.

注意: ,

, .

4.三角函数线的特征是:正弦线“站在 轴上(起点在 轴上)”、余弦线“躺在 轴上(起点是原点)”、正切线“站在点 处(起点是 )”.务必重视“三角函数值的大小与单位圆上相应点的坐标之间的关系,‘正弦’ ‘纵坐标’、‘余弦’ ‘横坐标’、‘正切’ ‘纵坐标除以横坐标之商’”;务必记住:单位圆中角终边的变化与 值的大小变化的关系. 为锐角 .

5.三角函数同角关系中,平方关系的运用中,务必重视“根据已知角的范围和三角函数的取值,精确确定角的范围,并进行定号”;

6.三角函数诱导公式的本质是:奇变偶不变,符号看象限.

7.三角函数变换主要是:角、函数名、次数、系数(常值)的变换,其核心是“角的变换”!

角的变换主要有:已知角与特殊角的变换、已知角与目标角的变换、角与其倍角的变换、两角与其和差角的变换.

如 , , , , 等.

常值变换主要指“1”的变换:

等.

三角式变换主要有:三角函数名互化(切割化弦)、三角函数次数的降升(降次、升次)、运算结构的转化(和式与积式的互化).解题时本着“三看”的基本原则来进行:“看角、看函数、看特征”,基本的技巧有:巧变角,公式变形使用,化切割为弦,用倍角公式将高次降次.

注意:和(差)角的函数结构与符号特征;余弦倍角公式的三种形式选用;降次(升次)公式中的符号特征.“正余弦‘三兄妹— ’的联系”(常和三角换元法联系在一起 ).

角公式中角的确定: (其中 角所在的象限由a, b的符号确定, 角的值由 确定)在求最值、化简时起着重要作用.尤其是两者系数绝对值之比为 的情形. 有实数解 .

8.三角函数性质、图像及其变换:

(1)三角函数的定义域、值域、单调性、奇偶性、有界性和周期性

注意:正切函数、余切函数的定义域;绝对值对三角函数周期性的影响:一般说来,某一周期函数解析式加绝对值或平方,其周期性是:弦减半、切不变.既为周期函数又是偶函数的函数自变量加绝对值,其周期性不变;其他不定.如 的周期都是 , 但 的周期为 , y=|tanx|的周期不变,问函数y=cos|x|, ,y=cos|x|是周期函数吗?

(2)三角函数图像及其几何性质:

(3)三角函数图像的变换:两轴方向的平移、伸缩及其向量的平移变换.

(4)三角函数图像的作法:三角函数线法、五点法(五点横坐标成等差数列)和变换法.

9.三角形中的三角函数:

(1)内角和定理:三角形三角和为 ,任意两角和与第三个角总互补,任意两半角和与第三个角的半角总互余.锐角三角形 三内角都是锐角 三内角的余弦值为正值 任两角和都是钝角 任意两边的平方和大于第三边的平方.

(2)正弦定理: (R为三角形外接圆的半径).

注意:已知三角形两边一对角,求解三角形时,若运用正弦定理,则务必注意可能有两解.

(3)余弦定理: 等,常选用余弦定理鉴定三角形的类型.

(4)面积公式: .

五、向 量

1.向量运算的几何形式和坐标形式,请注意:向量运算中向量起点、终点及其坐标的特征.

2.几个概念:零向量、单位向量(与 共线的单位向量是 ,特别: )、平行(共线)向量(无传递性,是因为有 )、相等向量(有传递性)、相反向量、向量垂直、以及一个向量在另一向量方向上的投影( 在 上的投影是 ).

3.两非零向量平行(共线)的充要条件

两个非零向量垂直的充要条件

特别:零向量和任何向量共线. 是向量平行的充分不必要条件!

4.平面向量的基本定理:如果e1和e2是同一平面内的两个不共线向量,那么对该平面内的任一向量a,有且只有一对实数 、 ,使a= e1+ e2.

5.三点 共线 共线;

向量 中三终点 共线 存在实数 使得: 且 .

6.向量的数量积: , ,

注意: 为锐角 且 不同向;

为直角 且 ;

为钝角 且 不反向;

是 为钝角的必要非充分条件.

向量运算和实数运算有类似的地方也有区别:一个封闭图形首尾连接而成的向量和为零向量,这是题目中的天然条件,要注意运用;对于一个向量等式,可以移项,两边平方、两边同乘以一个实数,两边同时取模,两边同乘以一个向量,但不能两边同除以一个向量,即两边不能约去一个向量;向量的“乘法”不满足结合律,即 ,切记两向量不能相除(相约).

7.

注意: 同向或有 ;

反向或有 ;

不共线 .(这些和实数集中类似)

8.中点坐标公式 , 为 的中点.

中, 过 边中点; ;

. 为 的重心;

特别 为 的重心.

为 的垂心;

所在直线过 的内心(是 的角平分线所在直线);

的内心.

六、不等式

1.(1)解不等式是求不等式的解集,最后务必有集合的形式表示;不等式解集的端点值往往是不等式对应方程的根或不等式有意义范围的端点值.

(2)解分式不等式 的一般解题思路是什么?(移项通分,分子分母分解因式,x的系数变为正值,标根及奇穿过偶弹回);

(3)含有两个绝对值的不等式如何去绝对值?(一般是根据定义分类讨论、平方转化或换元转化);

(4)解含参不等式常分类等价转化,必要时需分类讨论.注意:按参数讨论,最后按参数取值分别说明其解集,但若按未知数讨论,最后应求并集.

2.利用重要不等式 以及变式 等求函数的最值时,务必注意a,b (或a ,b非负),且“等号成立”时的条件是积ab或和a+b其中之一应是定值(一正二定三等四同时).

3.常用不等式有: (根据目标不等式左右的运算结构选用)

a、b、c R, (当且仅当 时,取等号)

4.比较大小的方法和证明不等式的方法主要有:差比较法、商比较法、函数性质法、综合法、分析法

5.含绝对值不等式的性质:

同号或有 ;

异号或有 .

注意:不等式恒成立问题的常规处理方式?(常应用方程函数思想和“分离变量法”转化为最值问题).

6.不等式的恒成立,能成立,恰成立等问题

(1).恒成立问题

若不等式 在区间 上恒成立,则等价于在区间 上

若不等式 在区间 上恒成立,则等价于在区间 上

(2).能成立问题

若在区间 上存在实数 使不等式 成立,即 在区间 上能成立, ,则等价于在区间 上

若在区间 上存在实数 使不等式 成立,即 在区间 上能成立, ,则等价于在区间 上的 .

(3).恰成立问题

若不等式 在区间 上恰成立, 则等价于不等式 的解集为 .

若不等式 在区间 上恰成立, 则等价于不等式 的解集为 ,

七、直线和圆

1.直线倾斜角与斜率的存在性及其取值范围;直线方向向量的意义( 或 )及其直线方程的向量式( ( 为直线的方向向量)).应用直线方程的点斜式、斜截式设直线方程时,一般可设直线的斜率为k,但你是否注意到直线垂直于x轴时,即斜率k不存在的情况?

2.知直线纵截距 ,常设其方程为 或 ;知直线横截距 ,常设其方程为 (直线斜率k存在时, 为k的倒数)或 .知直线过点 ,常设其方程为 或 .

注意:(1)直线方程的几种形式:点斜式、斜截式、两点式、截矩式、一般式、向量式.以及各种形式的局限性.(如点斜式不适用于斜率不存在的直线,还有截矩式呢?)

与直线 平行的直线可表示为 ;

与直线 垂直的直线可表示为 ;

过点 与直线 平行的直线可表示为:

过点 与直线 垂直的直线可表示为:

(2)直线在坐标轴上的截距可正、可负、也可为0.直线两截距相等 直线的斜率为-1或直线过原点;直线两截距互为相反数 直线的斜率为1或直线过原点;直线两截距绝对值相等 直线的斜率为 或直线过原点.

(3)在解析几何中,研究两条直线的位置关系时,有可能这两条直线重合,而在立体几何中一般提到的两条直线可以理解为它们不重合.

3.相交两直线的夹角和两直线间的到角是两个不同的概念:夹角特指相交两直线所成的较小角,范围是 ,而其到角是带有方向的角,范围是 .

注:点到直线的距离公式

特别: ;

4.线性规划中几个概念:约束条件、可行解、可行域、目标函数、最优解.

5.圆的方程:最简方程 ;标准方程 ;

一般式方程 ;

参数方程 为参数);

直径式方程 .

注意:

(1)在圆的一般式方程中,圆心坐标和半径分别是 .

(2)圆的参数方程为“三角换元”提供了样板,常用三角换元有:

, ,

6.解决直线与圆的关系问题有“函数方程思想”和“数形结合思想”两种思路,等价转化求解,重要的是发挥“圆的平面几何性质(如半径、半弦长、弦心距构成直角三角形,切线长定理、割线定理、弦切角定理等等)的作用!”

(1)过圆 上一点 圆的切线方程是: ,

过圆 上一点 圆的切线方程是: ,

过圆 上一点 圆的切线方程是: .

如果点 在圆外,那么上述直线方程表示过点 两切线上两切点的“切点弦”方程.

如果点 在圆内,那么上述直线方程表示与圆相离且垂直于 ( 为圆心)的直线方程, ( 为圆心 到直线的距离).

7.曲线 与 的交点坐标 方程组 的解;

过两圆 、 交点的圆(公共弦)系为 ,当且仅当无平方项时, 为两圆公共弦所在直线方程.

八、圆锥曲线

1.圆锥曲线的两个定义,及其“括号”内的限制条件,在圆锥曲线问题中,如果涉及到其两焦点(两相异定点),那么将优先选用圆锥曲线第一定义;如果涉及到其焦点、准线(一定点和不过该点的一定直线)或离心率,那么将优先选用圆锥曲线第二定义;涉及到焦点三角形的问题,也要重视焦半径和三角形中正余弦定理等几何性质的应用.

(1)注意:①圆锥曲线第一定义与配方法的综合运用;

②圆锥曲线第二定义是:“点点距为分子、点线距为分母”,椭圆 点点距除以点线距商是小于1的正数,双曲线 点点距除以点线距商是大于1的正数,抛物线 点点距除以点线距商是等于1.③圆锥曲线的焦半径公式如下图:

2.圆锥曲线的几何性质:圆锥曲线的对称性、圆锥曲线的范围、圆锥曲线的特殊点线、圆锥曲线的变化趋势.其中 ,椭圆中 、双曲线中 .

重视“特征直角三角形、焦半径的最值、焦点弦的最值及其‘顶点、焦点、准线等相互之间与坐标系无关的几何性质’”,尤其是双曲线中焦半径最值、焦点弦最值的特点.

注意:等轴双曲线的意义和性质.

3.在直线与圆锥曲线的位置关系问题中,有“函数方程思想”和“数形结合思想”两种思路,等价转化求解.特别是:

①直线与圆锥曲线相交的必要条件是他们构成的方程组有实数解,当出现一元二次方程时,务必“判别式≥0”,尤其是在应用韦达定理解决问题时,必须先有“判别式≥0”.

②直线与抛物线(相交不一定交于两点)、双曲线位置关系(相交的四种情况)的特殊性,应谨慎处理.

③在直线与圆锥曲线的位置关系问题中,常与“弦”相关,“平行弦”问题的关键是“斜率”、“中点弦”问题关键是“韦达定理”或“小小直角三角形”或“点差法”、“长度(弦长)”问题关键是长度(弦长)公式

( , , )或“小小直角三角形”.

④如果在一条直线上出现“三个或三个以上的点”,那么可选择应用“斜率”为桥梁转化.

4.要重视常见的寻求曲线方程的方法(待定系数法、定义法、直译法、代点法、参数法、交轨法、向量法等), 以及如何利用曲线的方程讨论曲线的几何性质(定义法、几何法、代数法、方程函数思想、数形结合思想、分类讨论思想和等价转化思想等),这是解析几何的两类基本问题,也是解析几何的基本出发点.

注意:①如果问题中涉及到平面向量知识,那么应从已知向量的特点出发,考虑选择向量的几何形式进行“摘帽子或脱靴子”转化,还是选择向量的代数形式进行“摘帽子或脱靴子”转化.

②曲线与曲线方程、轨迹与轨迹方程是两个不同的概念,寻求轨迹或轨迹方程时应注意轨迹上特殊点对轨迹的“完备性与纯粹性”的影响.

③在与圆锥曲线相关的综合题中,常借助于“平面几何性质”数形结合(如角平分线的双重身份)、“方程与函数性质”化解析几何问题为代数问题、“分类讨论思想”化整为零分化处理、“求值构造等式、求变量范围构造不等关系”等等.

九、直线、平面、简单多面体

1.计算异面直线所成角的关键是平移(补形)转化为两直线的夹角计算

2.计算直线与平面所成的角关键是作面的垂线找射影,或向量法(直线上向量与平面法向量夹角的余角),三余弦公式(最小角定理, ),或先运用等积法求点到直线的距离,后虚拟直角三角形求解.注:一斜线与平面上以斜足为顶点的角的两边所成角相等 斜线在平面上射影为角的平分线.

3.空间平行垂直关系的证明,主要依据相关定义、公理、定理和空间向量进行,请重视线面平行关系、线面垂直关系(三垂线定理及其逆定理)的桥梁作用.注意:书写证明过程需规范.

特别声明:

①证明计算过程中,若有“中点”等特殊点线,则常借助于“中位线、重心”等知识转化.

②在证明计算过程中常将运用转化思想,将具体问题转化 (构造) 为特殊几何体(如三棱锥、正方体、长方体、三棱柱、四棱柱等)中问题,并获得去解决.

③如果根据已知条件,在几何体中有“三条直线两两垂直”,那么往往以此为基础,建立空间直角坐标系,并运用空间向量解决问题.

4.直棱柱、正棱柱、平行六面体、长方体、正方体、正四面体、棱锥、正棱锥关于侧棱、侧面、对角面、平行于底的截面的几何体性质.

如长方体中:对角线长 ,棱长总和为 ,全(表)面积为 ,(结合 可得关于他们的等量关系,结合基本不等式还可建立关于他们的不等关系式), ;

如三棱锥中:侧棱长相等(侧棱与底面所成角相等) 顶点在底上射影为底面外心,侧棱两两垂直(两对对棱垂直) 顶点在底上射影为底面垂心,斜高长相等(侧面与底面所成相等)且顶点在底上在底面内 顶点在底上射影为底面内心.

如正四面体和正方体中:

5.求几何体体积的常规方法是:公式法、割补法、等积(转换)法、比例(性质转换)法等.注意:补形:三棱锥 三棱柱 平行六面体 分割:三棱柱中三棱锥、四三棱锥、三棱柱的体积关系是 .

6.多面体是由若干个多边形围成的几何体.棱柱和棱锥是特殊的多面体.

正多面体的每个面都是相同边数的正多边形,以每个顶点为其一端都有相同数目的棱,这样的多面体只有五种, 即正四面体、正六面体、正八面体、正十二面体、正二十面体.

9.球体积公式 ,球表面积公式 ,是两个关于球的几何度量公式.它们都是球半径及的函数.

十、导 数

1.导数的意义:曲线在该点处的切线的斜率(几何意义)、瞬时速度、边际成本(成本为因变量、产量为自变量的函数的导数). , (C为常数), , .

2.多项式函数的导数与函数的单调性:

在一个区间上 (个别点取等号) 在此区间上为增函数.

在一个区间上 (个别点取等号) 在此区间上为减函数.

3.导数与极值、导数与最值:

(1)函数 在 处有 且“左正右负” 在 处取极大值;

函数 在 处有 且“左负右正” 在 处取极小值.

注意:①在 处有 是函数 在 处取极值的必要非充分条件.

②求函数极值的方法:先找定义域,再求导,找出定义域的分界点,列表求出极值.特别是给出函数极大(小)值的条件,一定要既考虑 ,又要考虑验“左正右负”(“左负右正”)的转化,否则条件没有用完,这一点一定要切记.

③单调性与最值(极值)的研究要注意列表!

(2)函数 在一闭区间上的最大值是此函数在此区间上的极大值与其端点值中的“最大值”;

函数 在一闭区间上的最小值是此函数在此区间上的极小值与其端点值中的“最小值”;

注意:利用导数求最值的步骤:先找定义域 再求出导数为0及导数不存在的的点,然后比较定义域的端点值和导数为0的点对应函数值的大小,其中最大的就是最大值,最小就为最小值.

4.应用导数求曲线的切线方程,要以“切点坐标”为桥梁,注意题目中是“处?”还是“过?”,对“二次抛物线”过抛物线上一点的切线 抛物线上该点处的切线,但对“三次曲线”过其上一点的切线包含两条,其中一条是该点处的切线,另一条是与曲线相交于该点.

5.注意应用函数的导数,考察函数单调性、最值(极值),研究函数的性态,数形结合解决方程不等式等相关问题.

十一、概率、统计、算法(略) 赞同

高考数学常考题型答题技巧与方法有哪些

文科 数学 会考哪些题型呢?什么题型是最常考的?高三文科生在复习时要着重复习哪些题型呢?下面和我一起来看看吧!

文科数学常考题型有哪些

圆/坐标系与参数方程/不等式

一般全国卷文科数学的第22至24题会考圆/坐标系与参数方程/不等式三道选做题。参数方程是大家选做最多的一道题,参数方程主要考查轨迹方程计算方法、三角换元求最值、极坐标方程和直角坐标方程转化等,这道题相对容易做。

函数

一般全国卷文科数学的第21题会考函数题。高考对三角函数知识主要考查三角函数及解三角形两部分知识。主要知识点有三角函数概念。恒等变形、同角关系等。三角函数还可以和向量知识结合在一起考,也可以和正弦定理、余弦定理结合起来一起考查。

解析几何

一般全国卷文科数学的第20题会考解析几何题。解析几何也不是难题,只要大家平时努力,这些题目都算是相对简单的。所以大家不要有畏难情绪,认为这是最后2道大题就觉得有多难,其实如果你认认真真去做了,这道题还是有希望做对的。退一步来说,即便是真的不会了,那也可以得一些步骤分,前一两问还是没问题的。

立体几何

一般全国卷文科数学的第19题会考立体几何题。例题几何也不难,但大家一定要敢于尝试,敢于动笔写,不要说没有做题思路就放弃这道题。只要你按照常规的方法做就可以,然后一步步分析下去,边分析边写步骤,结果自然就出来了。如果没思路可以尝试2种以上的方法做。

概率

一般全国卷文科数学的第18题会考概率题。概率题相对比较简单,也是必须得分的题,这道题主要频数分布表、频率分布直方图、回归方程的求法、概率计算、相关系数的计算等等。主要还是对作图和识图能力考查比较多。

三角函数/数列

一般全国卷文科数学的第17题会考三角函数或数列题。数列是最简单的题目,或许你觉得它难,但它能放在第一道大题的位置,就说明你不应该丢分。数列题可以多总结一些类型题,分析归类,找到其中规律,题做多了,自然就有思路了。

文科数学成绩怎么提高

文科数学的一大特色,就在于你可以通过有效的总结来代替无尽的习题。总结并不代表一味地抄公式抄概念,而应该用自己的语言和做题经验归纳出针对自身的解题技巧,这也就是我所谓的“翻译”。事实上,高三一年我花在总结上的工夫与做题相比有过之而无不及。

粗心大意是文科数学学习中难以绕过的一大障碍,然而粗心只是表象,追本溯源仍是不够熟练。心态的调整亦无需花费额外的精力。我所取的措施是在临考一个月时找来近三年的 高考试题 ,在规定的时间内细做一遍,并将答案写在卷上,达到降低高考恐惧感,增强自信心的目的。

我推荐:高考数学复习重点题型有哪些

“偷懒”的第一要任就在于减少复习的负荷量。数学学习最大的负荷是永无止境的题海。开学伊始,我便整理出一个大体的概念框架,突出重点和难点。这样在第一轮复习大家都埋头做题之时,我便早早地跳出了题海。省下时间只是手段,把精力花在研究“精题”上才是目的。经验表明,选做精题为短期内成绩攀升打下了坚实的基础。

2021新高考数学大题必考题型有哪些

高考像漫漫人生路上的一道坎,无论成败与否,我认为现在都不重要了,重要的是要 总结 高考的得与失,以便在今后的人生之路上迈好每一个坎!下面就是我给大家带来的高考数学常考题型答题技巧与 方法 ,希望大家喜欢!

高考数学常考题型答题技巧与方法

1、解决绝对值问题

主要包括化简、求值、方程、不等式、函数等题,基本思路是:把含绝对值的问题转化为不含绝对值的问题。

具体转化方法有:

①分类讨论法:根据绝对值符号中的数或式子的正、零、负分情况去掉绝对值。

②零点分段讨论法:适用于含一个字母的多个绝对值的情况。

③两边平方法:适用于两边非负的方程或不等式。

④几何意义法:适用于有明显几何意义的情况。

2、因式分解

根据项数选择方法和按照一般步骤是顺利进行因式分解的重要技巧。因式分解的一般步骤是:

提取公因式

选择用公式

十字相乘法

分组分解法

拆项添项法

3、配方法

利用完全平方公式把一个式子或部分化为完全平方式就是配方法,它是数学中的重要方法和技巧。配方法的主要根据有:

4、换元法

解某些复杂的特型方程要用到“换元法”。换元法解方程的一般步骤是:

设元→换元→解元→还元

5、待定系数法

待定系数法是在已知对象形式的条件下求对象的一种方法。适用于求点的坐标、函数解析式、曲线方程等重要问题的解决。其解题步骤是:①设②列③解④写

6、复杂代数等式

复杂代数等式型条件的使用技巧:左边化零,右边变形。

①因式分解型:

(-----)(----)=0两种情况为或型

②配成平方型:

(----)2+(----)2=0两种情况为且型

7、数学中两个最伟大的解题思路

(1)求值的思路列欲求值字母的方程或方程组

(2)求取值范围的思路列欲求范围字母的不等式或不等式组

8、化简二次根式

基本思路是:把√m化成完全平方式。即:

9、观察法

10、代数式求值

方法有:

(1)直接代入法

(2)化简代入法

(3)适当变形法(和积代入法)

注意:当求值的代数式是字母的“对称式”时,通常可以化为字母“和与积”的形式,从而用“和积代入法”求值。

11、解含参方程

方程中除过未知数以外,含有的 其它 字母叫参数,这种方程叫含参方程。解含参方程一般要用‘分类讨论法’,其原则是:

(1)按照类型求解

(2)根据需要讨论

(3)分类写出结论

12、恒相等成立的有用条件

(1)ax+b=0对于任意x都成立关于x的方程ax+b=0有无数个解a=0且b=0。

(2)ax2+bx+c=0对于任意x都成立关于x的方程ax2+bx+c=0有无数解a=0、b=0、c=0。

13、恒不等成立的条件

由一元二次不等式解集为R的有关结论容易得到下列恒不等成立的条件:

14、平移规律

图像的平移规律是研究复杂函数的重要方法。平移规律是:

15、图像法

讨论函数性质的重要方法是图像法——看图像、得性质。

定义域图像在X轴上对应的部分

值域图像在Y轴上对应的部分

单调性从左向右看,连续上升的一段在X轴上对应的区间是增区间;从左向右看,连续下降的一段在X轴上对应的区间是减区间。

最值图像点处有值,图像最低点处有最小值

奇偶性关于Y轴对称是偶函数,关于原点对称是奇函数

16、函数、方程、不等式间的重要关系

方程的根

函数图像与x轴交点横坐标

不等式解集端点

17、一元二次不等式的解法

一元二次不等式可以用因式分解转化为二元一次不等式组去解,但比较复杂;它的简便的实用解法是根据“三个二次”间的关系,利用二次函数的图像去解。具体步骤如下:

二次化为正

判别且求根

画出示意图

解集横轴中

18、一元二次方程根的讨论

一元二次方程根的符号问题或m型问题可以利用根的判别式和根与系数的关系来解决,但根的一般问题、特别是区间根的问题要根据“三个二次”间的关系,利用二次函数的图像来解决。“图像法”解决一元二次方程根的问题的一般思路是:

题意

二次函数图像

不等式组

不等式组包括:a的符号;△的情况;对称轴的位置;区间端点函数值的符号。

19、基本函数在区间上的值域

我们学过的一次函数、反比例函数、二次函数等有名称的函数是基本函数。基本函数求值域或最值有两种情况:

(1)定义域没有特别限制时---记忆法或结论法;

(2)定义域有特别限制时---图像截断法,一般思路是:

画出图像

截出一断

得出结论

20、最值型应用题的解法

应用题中,涉及“一个变量取什么值时另一个变量取得值或最小值”的问题是最值型应用题。解决最值型应用题的基本思路是函数思想法,其解题步骤是:

设变量

列函数

求最值

写结论

21、穿线法

穿线法是解高次不等式和分式不等式的方法。其一般思路是:

首项化正

求根标根

右上起穿

奇穿偶回

注意:①高次不等式首先要用移项和因式分解的方法化为“左边乘积、右边是零”的形式。②分式不等式一般不能用两边都乘去分母的方法来解,要通过移项、通分合并、因式分解的方法化为“商零式”,用穿线法解。

高考数学常考题型答题技巧与方法有哪些相关 文章 :

1. 2019高考数学选择题万能答题技巧及方法

2. 高中数学常考题型答题技巧与方法及顺口溜

3. 高考数学必考题型以及题型分析

4. 高考数学选择题答题技巧有哪些

5. 2017高考数学常考的题型总结

6. 2017高考常考数学题型归纳

7. 高考数学答题技巧及复习方法

8. 高考数学不同题型的答题技巧

9. 高考数学的核心考点及答题技巧方法

今年安徽数学高考题难吗

从主干知识所占比重来看,新高考数学试卷与原来保持一致,主干知识的考察在60分,占整个填选题的75%,这也启示我们高中数学主干知识的稳定性与重要性,在以后的备考中要引起高度的重视。

2021年“新高考”数学试卷结构

第一大题,单项选择题,共8小题,每小题5分,共40分;

第二大题,多项选择题,共4小题,每小题5分,部分选对得3分,有选错得0分,共20分;

第三大题,填空题,共4小题,每小题5分,共20分;

第四大题,解答题,共6小题,均为必考题,涉及的内容是高中数学的六大主干知识:三角函数,数列,统计与概率,立体几何,函数与导数,解析几何。每小题12分,共60分。

怎么学好数学

数学是个费时费力的学科,无论文理,但凡数学好的同学很稳定的同学,他的数学相关时间基本符合一天时间的40-50%,所以如果数学想要冲击140,那么至少要保证40%的时间要花在数学上,如果你其他部分是很偏科的,那么就没有时间花在数学上,就不要做数学140的梦了

对于那些压轴题12、16、20、21来讲,首先不能怂,就全国卷目前 命题趋势来看,16题偏于简单,12题难度在增大,所以在有时间的情况下,可以先适度钻研16题,12题没时间没思路可以懵,毕竟是选择题,还是有概率蒙对的。

20题圆锥曲线类型考的不是难度,而是你是否认真。其实圆锥曲线并不难,该理解的关键点和题型搞清楚了它其实并没有太大的变化,所以这个地方题目去刷真题即可。(所有的好题都值得做三遍,什么是好题,你既然110以上了,应该有这个基本判断。)第一遍做正常做,做完对答案;第二遍隔天或者隔两天做效果最好,重新快速把昨天的好的题目过一遍,要针对关键步骤进行梳理,第二遍的想法和第一遍的想法有什么区别,差距在哪里,可以丰富思路,改变思考习惯,对于压力很大的考场有很大帮助。第三遍最好是7天以后,时隔7天,豁然开朗,不信你试试。好的学生在这一点上做的很好,拿到题目的时候他们并不是短时间内想出来这个题目怎么解,而是想起来类似很明朗的思路,按照这个思路去做题,然后一步步套进去,演算,就得出结果了。

全国卷高考数学的大题是什么的结构。 就是每个题的范围。

今年安徽数学高考题难度适中。

1.导数与函数

本次数学高考难度适中,主要考察了导数与函数的相关知识点,如函数图像、最值及导数的应用等。

2.数列与数学归纳法

另外,数列与数学归纳法也是本次考试的热点难点,需要考生在备考中加强练习。

3.立体几何

在空间几何方面,本次考试涉及到了多边形面积、球体体积等立体几何知识点。

4.统计与概率

统计与概率是本次考试中出现频率较高的知识点,考察了随机、条件概率和统计分布等内容。

5.复合函数

此外,复合函数是本次考试的一大难点,需要考生掌握好其定义和相关运算法则,加强练习。

总之,本次安徽数学高考题难度适中,涵盖了数学各个领域的知识点,对于备战高考的学生来说,还需注重平时的练习和思考,扎实掌握基础知识和解题技巧。

6.三角函数

此次高考数学试卷还涉及到了三角函数,如正弦函数、余弦函数等的图像变换和应用。

7.解析几何

解析几何也是本次考试的一个重要内容,需要考生掌握直线、圆、椭圆、双曲线等几何图形的基本性质和方程计算方法。

8.矩阵与行列式

矩阵与行列式是数学中的重要概念,在本次考试中也有所涉及,需要考生熟悉它们的定义、性质和运算法则。

9.数学证明

此外,数学证明也是本次考试的一大难点,需要考生具备一定的逻辑思维和推理能力,掌握好证明方法和技巧。

总的来说,本次安徽数学高考试卷题目难度偏中等,涵盖了数学各个领域的知识点,呈现出多样化和综合性的趋势,突显了数学学科的综合性和应用性。同时,也为广大考生提供了一个检验自身数学能力的机会,帮助他们更好地了解自己的优势和不足,为未来的学习和发展做好准备。

高考数学空间几何 概率大题类型

高考数学满分150分,选择题12道,填空题4道,每题5分,共80分,剩余的部分为几道大题,共70分,所以大题在整个卷子中占了相当大的比例,大题考察的范围分别是:

1.数列或者三角函数

2.立体几何

3.概率统计

4.圆锥曲线

5.导数

6.选修题(参数方程和不等式)

一、数列

这类型题目明显感觉就比较难了,但同时掌握了套路和方法,这部分题也没什么难的。

数列主要是求解通项公式和前n项和。首先是通项公式,要看题目中给出的条件形式,不同的形式对应不同的解题方法,其中主要包括公式法(定义法)、累加法、累乘法、待定系数法、数学归纳法 倒数变化法等,熟练应用这些方法并积累例题达到熟练的程度,然后就是求前n项和,这里一共有四种方法,倒序相加法、错位相减法、分组求和法以及裂项相消法,只要求前n项和只要考虑以上方法即可,多数情况下考察错位相减法,同时也是大家失分项,所以在这里一定要强加练习,规范书写步骤。

二、三角函数

对于三角函数的学习关键是熟记公式及灵活的运用公式,其实高中数学也是一门记忆学科,数学更需要背诵,很多知识、解法、定理往往更需要我们花时间背下来,很多时候,解题过程中被卡住,并不是因为想不到思路,而是因为简单的公式或者定理掌握不好,甚至是记反了,当然同时也是对题型的陌生和对解题方法的陌生。

对于三角函数的考法共有两种,分别是解三角形和三角函数本身,大概百分之十到二十的概率考解三角形,百分之八十到九十概率考对于三角函数本身的熟练运用,之所以解三角函数考的概率低是因为出现这样的题目简直太简单了,根本就是送分题,关于解三角函数,我们学习了三个公式,正弦定理、余弦定理和面积公式,所以除去求面积的话一定要用的面积公式之外,剩余的公式如果不能迅速判断,就都试一下,只要推出来要求的结果就可以了。另外一种就是考察三角函数本身,这样的题的套路一般都是给定一个相对较复杂的式子,然后问这个函数的定义域值域周期频率单调性等问题,解决方法就是首先利用和差倍半公式对原始式子进行化简,化简成一般式然后求解需要求的。所以归根结底还是要熟记公式。

三、概率统计

以理科数学为例,考点覆盖概率统计必修和选修的各个章节的内容,考查了抽样法、统计图表、数据的数字特征、用样本估计整体、回归分析、独立性检验、古典概型、几何概型、条件概率、相互独立的概率、独立重复试验的概率、离散型随机变量的分布列、数学期望与方差、超几何分布、二项分布、正态分布等基础知识和基本方法,这样听起来感觉内容多而杂,但其实只要掌握了基本知识,再加上例题的引导,后期各做一道练习题加以巩固,在高考中概率统计拿满分不是什么难事。但是简单的同时更加要求我们的仔细严谨程度,切记不要出现忘平方、忘开根号等低级错误。

四、立体几何

这个题相对于前面的给分题难度稍微大一些,可能会卡住一部分人,这道题有两到三问,前面问的某条线的大小或者证明某个线或面与另外一个线或面平行或垂直,最后一问是求二面角,这类题解题方法有两种,传统法和向量法,各有利弊。向量法可以说说任何情况下都可以使用,没有任何技术含量,肯定能解出正确答案,但是计算量大而且容易出错,应用向量法,首先建立空间直角坐标系,然后根据已知条件可以用向量表示每条直线,最后利用向量的知识求解题目,传统法求解则是同样要求我们熟练掌握各种性质定理和判定定理,在立体几何这一部分还有一个关键的要点,就是书写格式,这也是很多同学在平时考试结束后有这样的疑问“为什么要扣我这儿的分,我都证出来了······”之类的话,就是因为我们平时不注重书写步骤丢掉了很多不该丢掉的分数,在这一部分的推断题中,一定要注重条件和结论,几个结论推出来的一定切记缺一不可,否则即使之后结果得证也不会拿到全分。

五、圆锥曲线

仔细观察高考卷会发现圆锥曲线也是有一定的套路的,一般套路就是,前半部分是对基本性质的考察,后半部分考察与直线相交,且后半部分的步骤几乎都是一致的,即,设直线,然后将直线方程带入圆锥曲线,得一个有关x的二次方程,分析判别式,利用韦达定理的结果求解待求量,在这里要明确它的求解方法:直接法(性质法)、定义法、直译法、相关点法、参数法、交轨法、点差法。

六、导数和函数

导数与函数的题型大体分为三类:

1.关于单调性、最值、极值的考察

2.证明不等式

3.函数中含有字母,分类讨论字母的取值范围

七、参数方程

这一部分题目可以说成是送分题,这儿就不过多阐述了,唯一的方法就是考前狂刷一下历年高考题,这样就算拿满分也不是什么难事。

(18)(本小题满分12分)

某批发市场对某种商品的周销售量(单位:吨)进行统计,最近100周的统计结果如下表所示:

(Ⅰ)根据上面统计结果,求周销售量分别为2吨,3吨和4吨的频率;

(Ⅱ)已知每吨该商品的销售利润为2千元,?表示该种商品两周销售利润的和(单位:千元).若以上述频率作为概率,且各周的销售量相互独立,求?的分布列和数学期望.

答案:(18)本小题主要考查频率、概率、数学期望等基础知识,考查运用概率知识解决实际问题的能力.满分12分。

解:(Ⅰ)周销售量为2吨,3吨和4吨的频率分别为0.2,0.5和0.3.……3分

(Ⅱ)?的可能值为8,10,12,14,16,且

P(?=8)=0.22=0.04,

P(?=10)=2×0.2×0.5=0.2,

P(?=12)=0.52+2×0.2×0.3=0.37,

P(?=14)=2×0.5×0.3=0.3,

P(?=16)=0.32=0.09.

的分布列为

8?10?12?14?16

P?0.04?0.2?0.37?0.3?0.09

……9分

F?=8×0.04+10×0.2+12×0.37+14×0.3+16×0.09=12.4千元)……12分

(19)本小题主要考查空间中的线面关系,面面关系,解三角形等基础知识,考查空间想象能力与逻辑能力,满分12分。

解法一:

(I)证明:在正方体中,AD′?A′D,AD′⊥AB,又由已知可得

PF‖A′D,PH‖AD′,PQ‖AB,

所以PH⊥PF,PH⊥PQ,

所以PH⊥平面PQEF.

所以平面PQEF和平面PQGH互相垂直,……4分

(Ⅱ)证明:由(Ⅰ)知

,又截面PQEF和截面PQCH都是矩形,且PQ=1,所以截面PQEF和截面PQCH面积之和是

,是定值.

答案:(19)本小题主要考查空间中的线面关系,面面关系,解三角形等基础知识,考查空间想象能力与逻辑能力,满分12分。

解法一:

(I)证明:在正方体中,AD′?A′D,AD′⊥AB,又由已知可得

PF‖A′D,PH‖AD′,PQ‖AB,

所以PH⊥PF,PH⊥PQ,

所以PH⊥平面PQEF.

所以平面PQEF和平面PQGH互相垂直,……4分

(Ⅱ)证明:由(Ⅰ)知

,又截面PQEF和截面PQCH都是矩形,且PQ=1,所以截面PQEF和截面PQCH面积之和是

,是定值.?8分

(III)解:连结BC′交EQ于点M.

因为PH‖AD′,PQ‖AB,

所以平面ABC′D′和平面PQGH互相平行,因此D′E与平面PQGH所成角与

D′E与平面ABC′D′所成角相等.

与(I)同理可证EQ⊥平面PQGH,可知EM⊥平面ABC′D′,因此EM与D′E的比值就是所求的正弦值.

设AD′交PF于点N,连结EN,由FD=l-b知

因为AD′⊥平面PQEF,又已知D′E与平面PQEF成?角,

所以?D′E=?即?,

解得?,可知E为BC中点.

所以EM=?,又D′E=?,

故D′E与平面PQCH所成角的正弦值为?.

解法二:

以D为原点,射线DA、DC,DD′分别为x,y,z轴的正半轴建立如图的空间直角坐标系D-xyz由已知得DF-l-b,故

A(1,0,0),A′(1,0,1),D(0,0,0),D′(0,0,1),

P(1,0,b),Q(1,1,b),E(1,-b,1,0),?

F(1-b,0,0),G(b,1,1),H(b,0,1).

(I)证明:在所建立的坐标系中,可得

因为?是平面PQEF的法向量.

因为?是平面PQGH的法向量.

因为?,

所以平面PQEF和平面PQGH互相垂直?……4分

(II)证明:因为?,所以?,所以PQEF为矩形,同理PQGH为矩形.

在所建立的坐标系中可求得?

所以?,

所以截面PQEF和截面PQCH面积之和为?,是定值.?8分

(III)解:由已知得?角,又?可得

即?

所以?D′E与平面PQGH所成角的正弦值为

……12分

文章标签: # 数学 # 函数 # 方法