您现在的位置是: 首页 > 教育资讯 教育资讯

高考2卷理数答案_高考卷二数学答案及解析

tamoadmin 2024-07-24 人已围观

简介1.解析几何之目~用点差法破解:2020年理数全国卷A题202.折纸:2018年理数全国卷A题18:用勾股定理求解3.2009年和2010年江苏理科数学高考卷试题和答案2010年普通高等学校招生全国统一考试(安微卷)数学(理科)本试卷分I卷(选择题)和第II卷(非选择题)两部分,第I卷第1至2页,第II卷第3至第4页。全卷满分150分,考试时间120分钟。考生注意事项:1.答题前,务必在试题卷、答

1.解析几何之目~用点差法破解:2020年理数全国卷A题20

2.折纸:2018年理数全国卷A题18:用勾股定理求解

3.2009年和2010年江苏理科数学高考卷试题和答案

高考2卷理数答案_高考卷二数学答案及解析

2010年普通高等学校招生全国统一考试(安微卷)

数学(理科)

本试卷分I卷(选择题)和第II卷(非选择题)两部分,第I卷第1至2页,第II卷第3至第4页。全卷满分150分,考试时间120分钟。

考生注意事项:

1.答题前,务必在试题卷、答题卡规定的地方填写自己的姓名、座位号、并认真核对答题卡上所粘贴的条形码中姓名、座位号与本人姓名、座们号是否一致,务必在答题卡背面规定的地方填写姓名和座位号后两位。

2.答案I卷时,每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

3.答案II卷时,必须使用0.5毫米的黑色墨水签字笔在答题卡上书写,要求字体工整、笔迹清晰。作图题可先用铅笔在答题卡规定的位置绘出,确认后再用0.5毫米的黑色墨水签字笔描清楚。必须在题号所指示的答题区域作答,超出答题区域书写的答案无效,在试题卷、草稿约上答题无效。

4.考试结束,务必将试题卷和答题卡一并上交。

参考公式:

如果事A与B互斥,那么

如果A与B是两个任意, ,那么

如果A与B相互独立,那么

第一卷(选择题共50分)

一. 选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1) i 是虚数单位, =

(A) — (B) + (C) + (D) —

(2)若合计A={x },则 =

(A)(— 〕 ( ,+ ) (B)( , + )

(C)(— 〕 〔 ,+ ) (D)[ , + )

(3)设向量a=(1,0),b=( , ),则下列结论中正确的是

(A)|a|=|b| (B)a b =

(C)a-b 与b垂直 (D)a//b

(4).若f(x)是R上周期为5的奇函数,且满足f(1)=1,f(2)=2,则f(3)-f(4)=

(A)-1 (B) 1 (C) -2 (D) 2

(5).双曲线方程为x2 - 2y2=1,则它的右焦点坐标为

(A)( ,0) (B) ( ,0) (C) ( ,0) (D) ( ,0)

(6).设abc>0,二次函数f(x)=ax2+bx+c的图象可能是

(7)设曲线C的参数方程为 ( 为参数),直线l的方程为 ,则曲

线C到直线l距离为的点的个数为

(A)1 (B)2

(C)3 (D)4

(8)一个几个何体的三视图如图,该几何体的表面积为

(A)280 (B)292

(C)360 (D)372

(9)动点 在圆 上绕坐标原点沿逆时针方向匀速旋转,12秒旋转一周,

已知时间 时,点 的坐标是 ,则当 时,动点 的纵坐标 关于 (单位:秒)的函数的单调递增区向是

(A)[0,1] (B)[1,7]

(C)[7,12] (D)[0,1]和[7,12]

(10)设 是任意等比数列,它的前 项和,前2 项和与前3 项和分别为 ,则下列等式中恒成立的是

(A) (B)

(C) (D)

(在此卷上答题无效)

2010年普通高等学校招生全国统一考试(安徽卷)

数 学(理科)

第Ⅱ卷(非选择题 共100分)

考生注意事项:

请用0.5毫米黑色墨水签字笔在答题卡上作答,在试题卷上答题无效.

二.填空题:本大题共5小题,每小题5分,共25分,把答案填在答题卡的相应位置.

(11)命题“对任何 R, + >3”的否定是 .

(12)( ) 的展开式中, 的系数等于 .

(13) 设 满足约束条件 若目标函数 的最大值为8,则 的最小值为 。

(14) 如图所示,程序框图(算法流程图)的输出值 =

(15) 甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球。先从甲罐中随机取出一球放入乙罐,分别以 , 和 表示由甲罐取出的球是红球,白球和黑球的。再从乙罐中随机取出一球,以B表示由乙罐取出的球是红球的。则下列结论中正确的是 (写出所有正确结论的编号)

①P(B)= ;

②P(B| )= ;

③B与 相互独立;

④ , , 是两两互斥的;

⑤P(B)的值不能确定,因为它与 , , 中究竟哪一个发生有关;

三:解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤。解答时写在答题卡的指定区域内。

(16)(本小题满分12分)

设 是锐角三角形,a、b、c分别是内角A、B、C所对边长,并且 A=sin( )sin( )+ B。

(Ⅰ)求角A的值;

(Ⅱ)若 ? =12,a=2 ,求b、c(其中b<c)。

(17)(本小题满分12分)

设a为实数,函数f(x)= -2x+2a,x R.

(Ⅰ)求f(x)的单调区间与极值;

(Ⅱ)求证:当a> 2-1且x>0时, > -2ax+1

(18) (本小题满分13分)

如图,在多面体ABCDEF中,四边形ABCD是正方形,EF AB,EF FB, AB=2EF,

BFC=90°,BF FC,H为BC的中点。

(Ⅰ)求证:FH 平面EDB;

(Ⅱ)求证:AC 平面EDB;

(Ⅲ)求二面角B-DE-C的大小

(19)(本小题满分13分)

已知椭圆E经过点A(2.,3),对称轴为坐标轴,焦点 在x轴上,离心率c=

(Ⅰ)求椭圆E的方程;

(Ⅱ)求∠ 的角平分线所在直线l的方程

(Ⅲ)在椭圆E上是否存在关于直线l对称的相交两点?若存在,请找出,若不存在,说明理由。

(20)(本小题满分12分)

设数列 …… 中每一项都不为0

证明, 为等差数列的充分必要条件是:对任何 ,都有

……

(21)(本小题满分13分)

品酒师需定期接受酒味鉴别功能测试,一般通常用的测试方法如下:拿出n瓶外观相同但品质不同的酒让其品尝,要求其按品质优劣为它们排序;经过一段时间,等其记忆淡忘之后,再让其品尝这n瓶酒,并重新按品质优劣为它们排序,这成为一轮测试,根据一轮测试中的两次排序的偏离程度的高低为其评分.

现设n=4,分别以 表示第一次排序时被排为1,2,3,4的四种酒在第二次排序时的序号,并令

则X是对两次排序的偏离程度的一种描述。

(Ⅰ)写出X的可能值集合;

(Ⅱ)设 等可能地为1.2.3.4的各种排列,求X的分布列;

(Ⅲ)某品酒师在相继进行的三轮测试中都有X≤2,

(ⅰ)试按(Ⅱ)中的结果,计算出现这种现象的概率(定各轮测试相互独立);

(ⅱ)你认为该品酒师的酒味鉴别功能如何?说明理由。

解析几何之目~用点差法破解:2020年理数全国卷A题20

a+b代表第一列数纵向相加,c+d代表第二列数纵向相加a+c代表第一行数横向相加,b+d代表第二行数横向相加a\b\c\d就是对应了已知四个数(这是新课标选修知识,到时候高二学了你知道了)立体几何题见图

折纸:2018年理数全国卷A题18:用勾股定理求解

标签: 高中数学 高考真题 解析几何 数学思想与方法 点差法

已知 分别为椭圆 的左、右顶点, 为 的上顶点, . 为直线 上的动点, 与 的另一交点为 , 与 的另一交点为 .

(1) 求 的方程;

(2) 证明:直线 过定点。

解答第1问

先来解答基础性的第1问。

依题意可知: 三个点的坐标为: 代入题设条件可得:

的方程为:

第2问分析

解答高考数学题,有两条基本的路线(方向):其一,是向某些基本的模型(题型)靠拢;其二,是从基本的思想和方法出发进行分析。

本题我们用路线二来解决,并用“自问自答”的方式来展示分析过程。

: 本题中有哪些对象?对象之间有何关联?

: 本题中,基本的对象有椭圆、直线、椭圆的弦。 是直线 上的动点;而 是椭圆上的定点。

: 如何证明一条直线过定点?

: 如果一个定点的坐标始终满足一个直线族(动直线的集合)的方程,则这个定点始终在这些变动的直线上;则直线过这个定点。

如果方程可以写成: ,则定点在 轴上,其坐标为 .

如果方程可以写成: ,则定点在 轴上,其坐标为 .

相对而言,多数人对第一种形式较为熟悉;而对第二种形式就生疏一些。命题人有时就在这点上作文章。

: 从几何角度分析,能够得出哪些结论?是否可以猜出定点的大致位置?

: 从对称性的角度考虑问题。 轴是椭圆 和直线 公共的对称轴。因此,对于直线 上的任一点 , 其关于 轴的对称点 也在这条直线上。

顺首这条思路往下走:如我们把 换成 ,那么,直线 也就换成了 . 注意 和 是关于 轴对称的两条直线,它们的公共点必定在 轴上。

因此,本题中的定点一定在 轴上。这是一个重要的阶段性结论。可以帮助我们简化后面的计算。

: 从代数的角度分析,可以得出哪些结论?哪些量是已知的?哪些量是未知?哪些量是变化的?变化的量之间存在什么关联?

: 本题中,椭圆的方程已知(第1问的结论);点 是已知的定点; 是动点;

直线 是已知的定直线; 则是动直线。

注意: 这几个点都在椭圆上。所以,本题中可以找出多条椭圆的弦:

椭圆的弦是高中解析几何的重要研究对象。它具有以下性质:

: 椭圆的弦的性质:椭圆的弦的斜率与其中点的坐标存在一个简洁的联系。对于以原点为对称中心的椭圆,可以用公式表达如下: 或者:

上式中, 为弦 的中点; 代表原点。

这个性质,并不是定理,但是使用平方差法(又称点差法)可以迅速地推导得出,可以称为常用结论。在高考中,这个常用结论出现了多次。合理地猜想:这个性质对于解决眼前的问题也能发挥作用。

以上关系,对于本题中出现的众多的弦都是有效的。

由于 (也就是 ) 是椭圆的弦,根据弦的斜率就可以求出弦的中点。

同理,根据直线 的斜率,可以求出点 的坐标。

注意: 都是椭圆上的点,过这四点的弦有多条。这些弦的中点坐标存在联系。

是椭圆的长轴,其中点为原点 . 对于另外的几个中点可命名如下:记 中点为 , 记 中点为 , 记 中点为 ; 几个中点的坐标存在以下关系:

因此,如果有了 两点的坐标,就可以方便地求出点 的坐标。

如果算出点 的坐标,就可以求出直线 的斜率,并写出这条直线的点斜式方程。

如果求出直线 的方程,就可以算出所过定点的坐标,从而完成证明。

那么,直线 的斜率是多少呢?回答是:取决于动点 的坐标。这个坐标比较简单,只有一个变量,可以设为

借用函数及映射的符号,以上关系可以总结如下:

解题

理清以上关系之后,解答此题的路径(具体步骤)也就明确了:

1)引入参数 以表达动点 的坐标;

2)求直线 的斜率;

3)求中点 的坐标;

4)计算中点 的坐标;

5)计算直线 的斜率;

6)写出直线 的点斜式方程;

7)求出定点坐标;

解答第2问

因为椭圆 的方程为: ,若点 在该椭圆上,

则:

设点 坐标为: , 则直线 的斜率分别为:

1)当 , 则点 分别与点 重合,直线 与 轴重合。

2)当 :

两直线的方程为:

记 中点为 , 记 中点为 , 记 中点为 ; 则有:

代入直线方程可求出两个中点的坐标:

由于 中点为原点,而 中点分别为: , 所以:

同理可得:

方程为:

方程可化为: ;

综上所述,对 , 直线 一定经过定点 . 证明完毕。

微操指南

作为高考压轴题,除了考查大的思路,命题人还会安排一些小的关卡和障碍,考验考生的综合实力。

本题的特点在于:点 的坐标较为复杂,会令一部分人望而生畏,就此止步。

对这个关卡,可以用以下思路破解。

点斜式方程的标准形式如下:

在前面的分析中,我们从对称性角度已经得出结论:定点在 轴上,其坐标形式为

所以,我们用点斜式方程的以下变形:

代入前面的计算结果可得:

以上推导过程有一定复杂度。顺利完成类似任务的关键在于:经过开头的分析,我们已经知道定点在 轴上,所以我们相信:看起来十分复杂的分母和复杂的分子一定可以约分,最后化简为一个简单的形式。

这种“方向感”需要在平时培养。如缺乏方向感,一味地强调熟练,是难以完成任务的。

提炼与提高

2017年理科数学全国卷一题20也是“定点问题”,但两题的解法是有区别的。请注意比较。

2009年和2010年江苏理科数学高考卷试题和答案

如图,四边形 为正方形, 分别为 的中点,以 为折痕把 折起,使点 到达点 的位置,且 .

(1)证明∶平面 平面 ;

(2)求 与平面 所成角的正弦值.

解答问题1

∵ 四边形 为正方形, 分别为 的中点,

∴ , 是矩形,

又 ∵ , ∴ 平面

又 ∵ 平面 ,

∴ 平面 平面 . 证明完毕.

解答问题2

令 .

在平面 内作 , 点 为垂足.

在平面 内作 , 点 为垂足.

根据前节结论, 平面 ,而 平面 , ∴

又∵ , ∴ 平面

又∵ , 根据三垂线定理可得: , 是直角三角形;

∵ 分别为 的中点,∴

根据三角形的相似关系可知:

, ,

∵ , 根据勾股定理可得:

又 ∵

∴ 与平面 所成角的正弦值

提炼与提高

折纸类问题,既考立体几何,又考平面几何;是高考中常用的命题模式.

本题第1问,由线线垂直推出线面垂直,再由线面垂直推出面面垂直,体现了转化的思想。在立体几何中是很典型的做法。

第2问待求量为线面角的正弦,我们用几何方法解答,首先找出点 在平面 内的投影,然后根据三角形的相似关系算出了 长度,问题就解决了. 在这个过程中直到关键作用的是如下知识:

『三垂线定理』

平面几何:『相似三角形的判定及性质』

本题中出现了几个特殊的直角三角形,三边比等于 ;这个三角形在高考数学和高考物理中经常出现,详见下文:

初高中衔接讲座:正方形内的直角三角形

四个面都是直角三角形的四面体有个专门的名字:鳖臑. 本题中出现了两个鳖臑: . 这点也请留意一下.

本题第2问还有一种解法,就是用体积公式来完成计算。详见下文:

折纸:2018年理数全国卷A题18:用体积公式求解

2010 年江苏高考数学试题 一、填空题 1、设集合A={-1,1,3},B={a+2,a 2 +4},A∩B={3},则实数a=______▲________ 2、设复数z满足z(2-3i)=6+4i(其中i为虚数单位),则z的模为______▲________ 3、盒子中有大小相同的3只小球,1只黑球,若从中随机地摸出两只球,两只球颜色不同的概率是_▲__ 4、某棉纺厂为了了解一批棉花的质量,从中随机抽取了100根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标),所得数据都在区间[5,40]中,其频率分布直方图如图所示,则其抽样的100根中,有_▲___根在棉花纤维的长度小于20mm。 5、设函数f(x)=x(e x +ae -x ),x∈ R ,是偶函数,则实数a=_______▲_________ 6、在平面直角坐标系xOy中,双曲线 上一点M,点M的横坐标是3,则M到双曲线右焦点的距离是___▲_______ 7、右图是一个算法的流程图,则输出S的值是______▲_______ 开始 S←1 n←1 S←S+2 n S≥33 n←n+1 否 输出S 结束 是 8、函数y=x 2 (x>0)的图像在点(a k ,a k 2 )处的切线与x轴交点的横坐标为a k+1 ,k为正整数,a 1 =16,则a 1 +a 3 +a 5 =____▲_____ 9、在平面直角坐标系xOy中,已知圆 上有且仅有四个点到直线12x-5y+c=0的距离为1,则实数c的取值范围是______▲_____ 10、定义在区间 上的函数y=6cosx的图像与y=5tanx的图像的交点为P,过点P作PP 1 ⊥x轴于点P 1 ,直线PP 1 与y=sinx的图像交于点P 2 ,则线段P 1 P 2 的长为_______▲_____ 11、已知函数 ,则满足不等式 的x的范围是____▲____ 12、设实数x,y满足3≤ ≤8,4≤ ≤9,则 的最大值是_____▲____ 13、在锐角三角形ABC,A、B、C的对边分别为a、b、c, ,则 __▲ 14、将边长为1的正三角形薄片,沿一条平行于底边的直线剪成两块,其中一块是梯形,记S= ,则S的最小值是_______▲_______ 二、解答题 15、(14分)在平面直角坐标系xOy中,点A(-1,-2),B(2,3),C(-2,-1) (1)求以线段AB、AC为邻边的平行四边形两条对角线的长 (2)设实数t满足( )· =0,求t的值 16、(14分)如图,四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90 0 (1)求证:PC⊥BC (2)求点A到平面PBC的距离 17、(14分)某兴趣小组测量电视塔AE的高度H(单位m),如示意图,垂直放置的标杆BC高度h=4m,仰角∠ABE=α,∠ADE=β (1)该小组已经测得一组α、β的值,tanα=1.24,tanβ=1.20,,请据此算出H的值 (2)该小组分析若干测得的数据后,发现适当调整标杆到电视塔的距离d(单位m),使α与β之差较大,可以提高测量精确度,若电视塔实际高度为125m,问d为多少时,α-β最大 A B O F 18.(16分)在平面直角坐标系 中,如图,已知椭圆 的左右顶点为A,B,右顶点为F,设过点T( )的直线TA,TB与椭圆分别交于点M , ,其中m>0, ①设动点P满足 ,求点P的轨迹 ②设 ,求点T的坐标 ③设 ,求证:直线MN必过x轴上的一定点 (其坐标与m无关) 19.(16分)设各项均为正数的数列 的前n项和为 ,已知 ,数列 是公差为 的等差数列. ①求数列 的通项公式(用 表示) ②设 为实数,对满足 的任意正整数 ,不等式 都成立。求证: 的最大值为 20.(16分)设 使定义在区间 上的函数,其导函数为 .如果存在实数 和函数 ,其中 对任意的 都有 >0,使得 ,则称函数 具有性质 . (1)设函数 ,其中 为实数 ①求证:函数 具有性质 ②求函数 的单调区间 (2)已知函数 具有性质 ,给定 , ,且 ,若| |<| |,求 的取值范围 理科附加题 21(从以下四个题中任选两个作答,每题10分) (1)几何证明选讲 AB是⊙O的直径,D为⊙O上一点,过点D作⊙O的切线交AB延长线于C,若DA=DC,求证AB=2BC (2)矩阵与变换 在平面直角坐标系xOy中,A(0,0),B(-3,),C(-2,1),设k≠0,k∈R,M= ,N= ,点A、B、C在矩阵MN对应的变换下得到点A 1 ,B 1 ,C 1 ,△A 1 B 1 C 1 的面积是△ABC面积的2倍,求实数k的值 (3)参数方程与极坐标 在极坐标系中,圆ρ=2cosθ与直线3ρcosθ+4ρsinθ+a=0相切,求实数a的值 (4)不等式证明选讲 已知实数a,b≥0,求证: 22、(10分)某厂生产甲、乙两种产品,生产甲产品一等品80%,二等品20%;生产乙产品,一等品90%,二等品10%。生产一件甲产品,如果是一等品可获利4万元,若是二等品则要亏损1万元;生产一件乙产品,如果是一等品可获利6万元,若是二等品则要亏损2万元。设生产各种产品相互独立 (1)记x(单位:万元)为生产1件甲产品和件乙产品可获得的总利润,求x的分布列 (2)求生产4件甲产品所获得的利润不少于10万元的概率 23、(10分)已知△ABC的三边长为有理数 (1)求证cosA是有理数 (2)对任意正整数n,求证cosnA也是有理数 绝密★启用前 学科网 2009年普通高等学校招生全国统一考试(江苏卷) 学科网 数学Ⅰ 学科网 注 意 事 项 考生在答题前请认真阅读本注意事项及各题答题要求 1.本试卷共4页,包含填空题(第1题——第14题)、解答题(第15题——第20题)。本卷满分160分,考试时间为120分钟。考试结束后,请将本卷和答题卡一并交回。 2.答题前,请您务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。 3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与您本人是否相符。 4.请在答题卡上按照晤顺序在对应的答题区域内作答,在其他位置作答一律无效。作答必须用0.5毫米黑色墨水的签字笔。请注意字体工整,笔迹清楚。 5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗。 6.请保持答题卡卡面清洁,不要折叠、破损。 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 参考公式: 学科网 样本数据 的方差 学科网 一、填空题:本大题共 14 小题,每小题 5 分,共 70 分。请把答案填写在答题卡相应的位置上 . 学科网 1.若复数 ,其中 是虚数单位,则复数 的实部为★. 学科网 2.已知向量 和向量 的夹角为 , ,则向量 和向量 的数量积 ★ . 学科网 3.函数 的单调减区间为 ★ . 学科网 1 1 O x y 4.函数 为常数, 在闭区间 上的图象如图所示,则 ★ . 学科网 学科网 5.现有5根竹竿,它们的长度(单位:m)分别为2.5,2.6,2.7,2.8,2.9,若从中一次随机抽取2根竹竿,则它们的长度恰好相差0.3m的概率为 ★ . 学科网 6.某校甲、乙两个班级各有5名编号为1,2,3,4,5的学生进行投篮练习,每人投10次,投中的次数如下表: 学科网 学生 1号 2号 3号 4号 5号 甲班 6 7 7 8 7 乙班 6 7 6 7 9 开始 输出 结束 Y N 则以上两组数据的方差中较小的一个为 ★ . 学科网 7.右图是一个算法的流程图,最后输出的 ★ . 学科网 8.在平面上,若两个正三角形的连长的比为1:2,则它们的面积比为1:4,类似地,在宣传部,若两个正四面体的棱长的比为1:2,则它们的体积比为 学科网 9.在平面直角坐标系 中,点P在曲线 上,且在第二象限内,已知曲线C在点P处的切线的斜率为2,则点P的坐标为 ★ . 学科网 10.已知 ,函数 ,若实数 满足 ,则 的大小关系为 ★ . 学科网 11.已知集合 , ,若 则实数 的取值范围是 ,其中 ★ . 学科网 12.设和 为不重合的两个平面,给出下列命题: 学科网 (1)若 内的两条相交直线分别平行于 内的两条直线,则 平行于 ; 学科网 (2)若 外一条直线 与 内的一条直线平行,则和 平行; 学科网 (3)设和 相交于直线 ,若 内有一条直线垂直于 ,则和 垂直; 学科网 (4)直线 与 垂直的充分必要条件是 与 内的两条直线垂直. 学科网 上面命题中,真命题的序号 ★ (写出所有真命题的序号). 学科网 13.如图,在平面直角坐标系 中, 为椭圆 的四个顶点, 为其右焦点,直线 与直线 相交于点T,线段 与椭圆的交点 恰为线段 的中点,则该椭圆的离心率为 ★ . 学科网 x y A 1 B 2 A 2 O T M 学科网 学科网 14.设 是公比为 的等比数列, ,令 若数列 有连续四项在集合 中,则 ★ . 学科网 学科网 二、解答题:本大题共 6 小题,共计 90 分,请在答题卡指定区域内作答,解答时应写出文字说明、证明或演算步骤 . 学科网 15.(本小题满分14分) 学科网 设向量 学科网 (1)若与 垂直,求 的值; 学科网 (2)求 的最大值; 学科网 (3)若 ,求证: ∥ . 学科网 16.(本小题满分14分) 学科网 A B C A 1 B 1 C 1 E F D 如图,在直三棱柱 中, 分别是 的中点,点在上, 学科网 求证:(1) ∥ 学科网 (2) 学科网 17.(本小题满分14分) 学科网 设 是公差不为零的等差数列, 为其前 项和,满足 学科网 (1)求数列 的通项公式及前 项和 ; 学科网 (2)试求所有的正整数 ,使得 为数列 中的项. 学科网 18.(本小题满分16分) 学科网 在平面直角坐标系 中,已知圆 和圆 学科网 x y O 1 1 . . 学科网 (1)若直线 过点 ,且被圆 截得的弦长为 ,求直线 的方程; 学科网 (2)设P为平面上的点,满足:存在过点P的无穷多对互相垂的直线 ,它们分别与圆 和圆 相交,且直线 被圆 截得的弦长与直线 被圆 截得的弦长相等,试求所有满足条件的点P的坐标. 学科网 19.(本小题满分16分) 学科网 按照某学者的理论,设一个人生产某产品单件成本为 元,如果他卖出该产品的单价为 元,则他的满意度为 ;如果他买进该产品的单价为 元,则他的满意度为 .如果一个人对两种交易(卖出或买进)的满意度分别为 和 ,则他对这两种交易的综合满意度为 . 学科网 现设甲生产A、B两种产品的单件成本分别为12元和5元,乙生产A、B两种产品的单件成本分别为3元和20元,设产品A、B的单价分别为 元和 元,甲买进A与卖出B的综合满意度为 ,乙卖出A与买进B的综合满意度为 学科网 (1) 求和 关于 、 的表达式;当时,求证: = ; 学科网 (2) 设 ,当、 分别为多少时,甲、乙两人的综合满意度均最大?最大的综合满意度为多少? 学科网 (3) 记(2)中最大的综合满意度为 ,试问能否适当选取 、 的值,使得 和 同时成立,但等号不同时成立?试说明理由。 学科网 学科网 20.(本小题满分16分) 学科网 设 为实数,函数 . 学科网 (1) 若 ,求 的取值范围; 学科网 (2) 求 的最小值; 学科网 (3) 设函数 ,直接写出(不需给出演算步骤)不等式 的解集. 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网

文章标签: # 学科 # 直线 # 坐标