您现在的位置是: 首页 > 教育分析 教育分析

数学高考题集_数学高考题集合

tamoadmin 2024-07-14 人已围观

简介1.今年高考数学问题2.数学高考3.2009年和2010年江苏理科数学高考卷试题和答案4.2006年上海数学高考题选填题:集合、复数、框图计算、线性规划、命题、双曲线和抛物线基础、等差和等比数列基础计算、三视图、三角函数图象平移、指数对数比较大小、诱导公式;解答题:三角——有一定基础的话,可以反复练习8个典型题,拿到6-10分,还来得及;概率——文科考统计和概率,不难懂,比三角要好拿的,可拿10分

1.今年高考数学问题

2.数学高考

3.2009年和2010年江苏理科数学高考卷试题和答案

4.2006年上海数学高考题

数学高考题集_数学高考题集合

选填题:集合、复数、框图计算、线性规划、命题、双曲线和抛物线基础、等差和等比数列基础计算、三视图、三角函数图象平移、指数对数比较大小、诱导公式;

解答题:

三角——有一定基础的话,可以反复练习8个典型题,拿到6-10分,还来得及;

概率——文科考统计和概率,不难懂,比三角要好拿的,可拿10分;

立几——一个小时可以学会线面平行,拿4分;

数列——等差和等比数列基础的常规计算可拿4分;

导数——会求导公式、求切线可拿1-4分;

圆锥曲线——会求常见的求椭圆方程可拿4-5分。

以上都是可用很短时间就学会的小考点,但是学会要立马投入做题,把它做熟即可。

我是数学老师,辅导艺考生一般都是冲这些知识点打歼灭战。

好好努力,不言放弃,做题一直到6月7日晚上才停止,考到50以上有把握的。

祝你成功!!

今年高考数学问题

理科

1.设集合,Z为整数集,则中元素的个数是[ ]

2.设i为虚数单位,则的展开式中含x4的项为[ ]

3.为了得到函数的图象,只需把函数的图象上所有的点[ ]

4.用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为[ ]

5.某公司为激励创新,逐年加大研发资金投入.若该公司2015年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是[ ]

(参考数据:lg 1.12≈0.05,lg 1.3≈0.11,lg2≈0.30)

6.秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入n,x的值分别为3,2,判断出v的值为[ ]

7.设p:实数x,y满足(x–1)2–(y–1)2≤2,q:实数x,y满足 则p是q的[ ]

8.设O为坐标原点,P是以F为焦点的抛物线 上任意一点,M是线段PF上的点,且

=2,则直线OM的斜率的最大值为[ ]

9.设直线l1,l2分别是函数f(x)= 图象上点P1,P2处的切线,l1与l2垂直相交于点P,且l1,l2分别与y轴相交于点A,B,则△PAB的面积的取值范围是[ ]

10.在平面内,定点A,B,C,D满足 ==,﹒=﹒=﹒=-2,动点P,M满足 =1,=,则的最大值是[ ]

11.cos2–sin2= .

12.同时抛掷两枚质地均匀的硬币,当至少有一枚硬币正面向上时,就说这次试验成功,则在2次试验中成功次数X的均值是[ ]

13.已知三棱镜的四个面都是腰长为2的等腰三角形,该三棱锥的正视图如图所示,则该三棱锥的体积是[ ]

14.已知函数f(x)是定义在R上的周期为2的奇函数,当0<x<1时,f(x)=,则f()+ f(1)=

15.在平面直角坐标系中,当P(x,y)不是原点时,定义P的“伴随点”为;

当P是原点时,定义P的“伴随点“为它自身,平面曲线C上所有点的“伴随点”所构成的曲线定义为曲线C的“伴随曲线”.现有下列命题:

①若点A的“伴随点”是点,则点的“伴随点”是点A

②单位圆的“伴随曲线”是它自身;

③若曲线C关于x轴对称,则其“伴随曲线”关于y轴对称;

④一条直线的“伴随曲线”是一条直线.

其中的真命题是_____________(写出所有真命题的序列).

16.(本小题满分12分)

我国是世界上严重缺水的国家,某市为了鼓励居民节约用水,调整居民生活用水收费方案,拟确定一个合理的月用水量标准(吨)、一位居民的月用水量不超过的部分按平价收费,超出的部分按议价收费.为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…,[4,4.5)分成9组,制成了如图所示的频率分布直方图.

(I)求直方图中a的值;

(II)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,并说明理由;

(III)若该市希望使85%的居民每月的用水量不超过标准(吨),估计的值,并说明理由.

17.(本小题满分12分)

在△ABC中,角A,B,C所对的边分别是a,b,c,且.

(I)证明:;

(II)若,求.

18.(本小题满分12分)

如图,在四棱锥P-ABCD中,AD∥BC,ADC=PAB=90°,BC=CD=AD.E为边AD的中点,异面直线PA与CD所成的角为90°.

(I)在平面PAB内找一点M,使得直线CM∥平面PBE,并说明理由;

(II)若二面角P-CD-A的大小为45°,求直线PA与平面PCE所成角的正弦值.

19.(本小题满分12分)

已知数列{}的首项为1, 为数列{}的前n项和, ,其中q>0, .

(I)若 成等差数列,求an的通项公式;

(ii)设双曲线 的离心率为 ,且 ,证明:.

20.(本小题满分13分)

已知椭圆E:的两个焦点与短轴的一个端点是直角三角形的三个顶点,直线l:y=-x+3与椭圆E有且只有一个公共点T.

(I)求椭圆E的方程及点T的坐标;

(II)设O是坐标原点,直线l’平行于OT,与椭圆E交于不同的两点A、B,且与直线l交于点P.证明:存在常数λ,使得∣PT∣2=λ∣PA∣·∣PB∣,并求λ的值.

21.(本小题满分14分)

设函数f(x)=ax2-a-lnx,其中

(I)讨论f(x)的单调性;

(II)确定a的所有可能取值,使得在区间(1,+∞)内恒成立(e=2.718…为自然对数的底数).

数学高考

高中数学重点知识与结论分类解析

一、集合与简易逻辑

1.集合的元素具有确定性、无序性和互异性.

2.对集合 , 时,必须注意到“极端”情况: 或 ;求集合的子集时是否注意到 是任何集合的子集、 是任何非空集合的真子集.

3.对于含有 个元素的有限集合 ,其子集、真子集、非空子集、非空真子集的个数依次为

4.“交的补等于补的并,即 ”;“并的补等于补的交,即 ”.

5.判断命题的真 关键是“抓住关联字词”;注意:“不‘或’即‘且’,不‘且’即‘或’”.

6.“或命题”的真特点是“一真即真,要全”;“且命题”的真特点是“一即,要真全真”;“非命题”的真特点是“一真一”.

7.四种命题中“‘逆’者‘交换’也”、“‘否’者‘否定’也”.

原命题等价于逆否命题,但原命题与逆命题、否命题都不等价.反证法分为三步:设、推矛、得果.

注意:命题的否定是“命题的非命题,也就是‘条件不变,仅否定结论’所得命题”,但否命题是“既否定原命题的条件作为条件,又否定原命题的结论作为结论的所得命题” ?.

8.充要条件

二、函 数

1.指数式、对数式, , ,

, , , , , , .

2.(1)映射是“‘全部射出’加‘一箭一雕’”;映射中第一个集合 中的元素必有像,但第二个集合 中的元素不一定有原像( 中元素的像有且仅有下一个,但 中元素的原像可能没有,也可任意个);函数是“非空数集上的映射”,其中“值域是映射中像集 的子集”.

(2)函数图像与 轴垂线至多一个公共点,但与 轴垂线的公共点可能没有,也可任意个.

(3)函数图像一定是坐标系中的曲线,但坐标系中的曲线不一定能成为函数图像.

3.单调性和奇偶性

(1)奇函数在关于原点对称的区间上若有单调性,则其单调性完全相同.

偶函数在关于原点对称的区间上若有单调性,则其单调性恰恰相反.

注意:(1)确定函数的奇偶性,务必先判定函数定义域是否关于原点对称.确定函数奇偶性的常用方法有:定义法、图像法等等.对于偶函数而言有: .

(2)若奇函数定义域中有0,则必有 .即 的定义域时, 是 为奇函数的必要非充分条件.

(3)确定函数的单调性或单调区间,在解答题中常用:定义法(取值、作差、鉴定)、导数法;在选择、填空题中还有:数形结合法(图像法)、特殊值法等等.

(4)既奇又偶函数有无穷多个( ,定义域是关于原点对称的任意一个数集).

(7)复合函数的单调性特点是:“同性得增,增必同性;异性得减,减必异性”.

复合函数的奇偶性特点是:“内偶则偶,内奇同外”.复合函数要考虑定义域的变化。(即复合有意义)

4.对称性与周期性(以下结论要消化吸收,不可强记)

(1)函数 与函数 的图像关于直线 ( 轴)对称.

推广一:如果函数 对于一切 ,都有 成立,那么 的图像关于直线 (由“ 和的一半 确定”)对称.

推广二:函数 , 的图像关于直线 (由 确定)对称.

(2)函数 与函数 的图像关于直线 ( 轴)对称.

(3)函数 与函数 的图像关于坐标原点中心对称.

推广:曲线 关于直线 的对称曲线是 ;

曲线 关于直线 的对称曲线是 .

(5)类比“三角函数图像”得:若 图像有两条对称轴 ,则 必是周期函数,且一周期为 .

如果 是R上的周期函数,且一个周期为 ,那么 .

特别:若 恒成立,则 .若 恒成立,则 .若 恒成立,则 .

三、数  列

1.数列的通项、数列项的项数,递推公式与递推数列,数列的通项与数列的前 项和公式的关系: (必要时请分类讨论).

注意: ; .

2.等差数列 中:

(1)等差数列公差的取值与等差数列的单调性.

(2) ; .

(3) 、 也成等差数列.

(4)两等差数列对应项和(差)组成的新数列仍成等差数列.

(5) 仍成等差数列.

(6) , , , , .

(7) ; ; .

(8)“首正”的递减等差数列中,前 项和的最大值是所有非负项之和;

“首负”的递增等差数列中,前 项和的最小值是所有非正项之和;

(9)有限等差数列中,奇数项和与偶数项和的存在必然联系,由数列的总项数是偶数还是奇数决定.若总项数为偶数,则“偶数项和”-“奇数项和”=总项数的一半与其公差的积;若总项数为奇数,则“奇数项和”-“偶数项和”=此数列的中项.

(10)两数的等差中项惟一存在.在遇到三数或四数成等差数列时,常考虑选用“中项关系”转化求解.

(11)判定数列是否是等差数列的主要方法有:定义法、中项法、通项法、和式法、图像法(也就是说数列是等差数列的充要条件主要有这五种形式).

3.等比数列 中:

(1)等比数列的符号特征(全正或全负或一正一负),等比数列的首项、公比与等比数列的单调性.

(2) ; .

(3) 、 、 成等比数列; 成等比数列 成等比数列.

(4)两等比数列对应项积(商)组成的新数列仍成等比数列.

(5) 成等比数列.

(6) .

特别: .

(7) .

(8)“首大于1”的正值递减等比数列中,前 项积的最大值是所有大于或等于1的项的积;“首小于1”的正值递增等比数列中,前 项积的最小值是所有小于或等于1的项的积;

(9)有限等比数列中,奇数项和与偶数项和的存在必然联系,由数列的总项数是偶数还是奇数决定.若总项数为偶数,则“偶数项和”=“奇数项和”与“公比”的积;若总项数为奇数,则“奇数项和”=“首项”加上“公比”与“偶数项和”积的和.

(10)并非任何两数总有等比中项.仅当实数 同号时,实数 存在等比中项.对同号两实数 的等比中项不仅存在,而且有一对 .也就是说,两实数要么没有等比中项(非同号时),如果有,必有一对(同号时).在遇到三数或四数成等差数列时,常优先考虑选用“中项关系”转化求解.

(11)判定数列是否是等比数列的方法主要有:定义法、中项法、通项法、和式法(也就是说数列是等比数列的充要条件主要有这四种形式).

4.等差数列与等比数列的联系

(1)如果数列 成等差数列,那么数列 ( 总有意义)必成等比数列.

(2)如果数列 成等比数列,那么数列 必成等差数列.

(3)如果数列 既成等差数列又成等比数列,那么数列 是非零常数数列;但数列 是常数数列仅是数列既成等差数列又成等比数列的必要非充分条件.

(4)如果两等差数列有公共项,那么由他们的公共项顺次组成的新数列也是等差数列,且新等差数列的公差是原两等差数列公差的最小公倍数.

如果一个等差数列与一个等比数列有公共项顺次组成新数列,那么常选用“由特殊到一般的方法”进行研讨,且以其等比数列的项为主,探求等比数列中那些项是他们的公共项,并构成新的数列.

注意:(1)公共项仅是公共的项,其项数不一定相同,即研究 .但也有少数问题中研究 ,这时既要求项相同,也要求项数相同.(2)三(四)个数成等差(比)的中项转化和通项转化法.

5.数列求和的常用方法:

(1)公式法:①等差数列求和公式(三种形式),

②等比数列求和公式(三种形式),

③ , , , .

(2)分组求和法:在直接运用公式法求和有困难时,常将“和式”中“同类项”先合并在一起,再运用公式法求和.

(3)倒序相加法:在数列求和中,若和式中到首尾距离相等的两项和有其共性或数列的通项与组合数相关联,则常可考虑选用倒序相加法,发挥其共性的作用求和(这也是等差数列前 和公式的推导方法).

(4)错位相减法:如果数列的通项是由一个等差数列的通项与一个等比数列的通项相乘构成,那么常选用错位相减法,将其和转化为“一个新的的等比数列的和”求解(注意:一般错位相减后,其中“新等比数列的项数是原数列的项数减一的差”!)(这也是等比数列前 和公式的推导方法之一).

(5)裂项相消法:如果数列的通项可“分裂成两项差”的形式,且相邻项分裂后相关联,那么常选用裂项相消法求和.常用裂项形式有:

① ,

② ,

特别声明:?运用等比数列求和公式,务必检查其公比与1的关系,必要时分类讨论.

(6)通项转换法。

四、三角函数

1. 终边与 终边相同( 的终边在 终边所在射线上) .

终边与 终边共线( 的终边在 终边所在直线上) .

终边与 终边关于 轴对称 .

终边与 终边关于 轴对称 .

终边与 终边关于原点对称 .

一般地: 终边与 终边关于角 的终边对称 .

与 的终边关系由“两等分各象限、一二三四”确定.

2.弧长公式: ,扇形面积公式: ,1弧度(1rad) .

3.三角函数符号特征是:一是全正、二正弦正、三是切正、四余弦正.

注意: ,

, .

4.三角函数线的特征是:正弦线“站在 轴上(起点在 轴上)”、余弦线“躺在 轴上(起点是原点)”、正切线“站在点 处(起点是 )”.务必重视“三角函数值的大小与单位圆上相应点的坐标之间的关系,‘正弦’ ‘纵坐标’、‘余弦’ ‘横坐标’、‘正切’ ‘纵坐标除以横坐标之商’”;务必记住:单位圆中角终边的变化与 值的大小变化的关系. 为锐角 .

5.三角函数同角关系中,平方关系的运用中,务必重视“根据已知角的范围和三角函数的取值,精确确定角的范围,并进行定号”;

6.三角函数诱导公式的本质是:奇变偶不变,符号看象限.

7.三角函数变换主要是:角、函数名、次数、系数(常值)的变换,其核心是“角的变换”!

角的变换主要有:已知角与特殊角的变换、已知角与目标角的变换、角与其倍角的变换、两角与其和差角的变换.

如 , , , , 等.

常值变换主要指“1”的变换:

等.

三角式变换主要有:三角函数名互化(切割化弦)、三角函数次数的降升(降次、升次)、运算结构的转化(和式与积式的互化).解题时本着“三看”的基本原则来进行:“看角、看函数、看特征”,基本的技巧有:巧变角,公式变形使用,化切割为弦,用倍角公式将高次降次.

注意:和(差)角的函数结构与符号特征;余弦倍角公式的三种形式选用;降次(升次)公式中的符号特征.“正余弦‘三兄妹— ’的联系”(常和三角换元法联系在一起 ).

角公式中角的确定: (其中 角所在的象限由a, b的符号确定, 角的值由 确定)在求最值、化简时起着重要作用.尤其是两者系数绝对值之比为 的情形. 有实数解 .

8.三角函数性质、图像及其变换:

(1)三角函数的定义域、值域、单调性、奇偶性、有界性和周期性

注意:正切函数、余切函数的定义域;绝对值对三角函数周期性的影响:一般说来,某一周期函数解析式加绝对值或平方,其周期性是:弦减半、切不变.既为周期函数又是偶函数的函数自变量加绝对值,其周期性不变;其他不定.如 的周期都是 , 但 的周期为 , y=|tanx|的周期不变,问函数y=cos|x|, ,y=cos|x|是周期函数吗?

(2)三角函数图像及其几何性质:

(3)三角函数图像的变换:两轴方向的平移、伸缩及其向量的平移变换.

(4)三角函数图像的作法:三角函数线法、五点法(五点横坐标成等差数列)和变换法.

9.三角形中的三角函数:

(1)内角和定理:三角形三角和为 ,任意两角和与第三个角总互补,任意两半角和与第三个角的半角总互余.锐角三角形 三内角都是锐角 三内角的余弦值为正值 任两角和都是钝角 任意两边的平方和大于第三边的平方.

(2)正弦定理: (R为三角形外接圆的半径).

注意:已知三角形两边一对角,求解三角形时,若运用正弦定理,则务必注意可能有两解.

(3)余弦定理: 等,常选用余弦定理鉴定三角形的类型.

(4)面积公式: .

五、向 量

1.向量运算的几何形式和坐标形式,请注意:向量运算中向量起点、终点及其坐标的特征.

2.几个概念:零向量、单位向量(与 共线的单位向量是 ,特别: )、平行(共线)向量(无传递性,是因为有 )、相等向量(有传递性)、相反向量、向量垂直、以及一个向量在另一向量方向上的投影( 在 上的投影是 ).

3.两非零向量平行(共线)的充要条件

两个非零向量垂直的充要条件

特别:零向量和任何向量共线. 是向量平行的充分不必要条件!

4.平面向量的基本定理:如果e1和e2是同一平面内的两个不共线向量,那么对该平面内的任一向量a,有且只有一对实数 、 ,使a= e1+ e2.

5.三点 共线 共线;

向量 中三终点 共线 存在实数 使得: 且 .

6.向量的数量积: , ,

注意: 为锐角 且 不同向;

为直角 且 ;

为钝角 且 不反向;

是 为钝角的必要非充分条件.

向量运算和实数运算有类似的地方也有区别:一个封闭图形首尾连接而成的向量和为零向量,这是题目中的天然条件,要注意运用;对于一个向量等式,可以移项,两边平方、两边同乘以一个实数,两边同时取模,两边同乘以一个向量,但不能两边同除以一个向量,即两边不能约去一个向量;向量的“乘法”不满足结合律,即 ,切记两向量不能相除(相约).

7.

注意: 同向或有 ;

反向或有 ;

不共线 .(这些和实数集中类似)

8.中点坐标公式 , 为 的中点.

中, 过 边中点; ;

. 为 的重心;

特别 为 的重心.

为 的垂心;

所在直线过 的内心(是 的角平分线所在直线);

的内心.

六、不等式

1.(1)解不等式是求不等式的解集,最后务必有集合的形式表示;不等式解集的端点值往往是不等式对应方程的根或不等式有意义范围的端点值.

(2)解分式不等式 的一般解题思路是什么?(移项通分,分子分母分解因式,x的系数变为正值,标根及奇穿过偶弹回);

(3)含有两个绝对值的不等式如何去绝对值?(一般是根据定义分类讨论、平方转化或换元转化);

(4)解含参不等式常分类等价转化,必要时需分类讨论.注意:按参数讨论,最后按参数取值分别说明其解集,但若按未知数讨论,最后应求并集.

2.利用重要不等式 以及变式 等求函数的最值时,务必注意a,b (或a ,b非负),且“等号成立”时的条件是积ab或和a+b其中之一应是定值(一正二定三等四同时).

3.常用不等式有: (根据目标不等式左右的运算结构选用)

a、b、c R, (当且仅当 时,取等号)

4.比较大小的方法和证明不等式的方法主要有:差比较法、商比较法、函数性质法、综合法、分析法

5.含绝对值不等式的性质:

同号或有 ;

异号或有 .

注意:不等式恒成立问题的常规处理方式?(常应用方程函数思想和“分离变量法”转化为最值问题).

6.不等式的恒成立,能成立,恰成立等问题

(1).恒成立问题

若不等式 在区间 上恒成立,则等价于在区间 上

若不等式 在区间 上恒成立,则等价于在区间 上

(2).能成立问题

若在区间 上存在实数 使不等式 成立,即 在区间 上能成立, ,则等价于在区间 上

若在区间 上存在实数 使不等式 成立,即 在区间 上能成立, ,则等价于在区间 上的 .

(3).恰成立问题

若不等式 在区间 上恰成立, 则等价于不等式 的解集为 .

若不等式 在区间 上恰成立, 则等价于不等式 的解集为 ,

七、直线和圆

1.直线倾斜角与斜率的存在性及其取值范围;直线方向向量的意义( 或 )及其直线方程的向量式( ( 为直线的方向向量)).应用直线方程的点斜式、斜截式设直线方程时,一般可设直线的斜率为k,但你是否注意到直线垂直于x轴时,即斜率k不存在的情况?

2.知直线纵截距 ,常设其方程为 或 ;知直线横截距 ,常设其方程为 (直线斜率k存在时, 为k的倒数)或 .知直线过点 ,常设其方程为 或 .

注意:(1)直线方程的几种形式:点斜式、斜截式、两点式、截矩式、一般式、向量式.以及各种形式的局限性.(如点斜式不适用于斜率不存在的直线,还有截矩式呢?)

与直线 平行的直线可表示为 ;

与直线 垂直的直线可表示为 ;

过点 与直线 平行的直线可表示为:

过点 与直线 垂直的直线可表示为:

(2)直线在坐标轴上的截距可正、可负、也可为0.直线两截距相等 直线的斜率为-1或直线过原点;直线两截距互为相反数 直线的斜率为1或直线过原点;直线两截距绝对值相等 直线的斜率为 或直线过原点.

(3)在解析几何中,研究两条直线的位置关系时,有可能这两条直线重合,而在立体几何中一般提到的两条直线可以理解为它们不重合.

3.相交两直线的夹角和两直线间的到角是两个不同的概念:夹角特指相交两直线所成的较小角,范围是 ,而其到角是带有方向的角,范围是 .

注:点到直线的距离公式

特别: ;

4.线性规划中几个概念:约束条件、可行解、可行域、目标函数、最优解.

5.圆的方程:最简方程 ;标准方程 ;

一般式方程 ;

参数方程 为参数);

直径式方程 .

注意:

(1)在圆的一般式方程中,圆心坐标和半径分别是 .

(2)圆的参数方程为“三角换元”提供了样板,常用三角换元有:

, ,

6.解决直线与圆的关系问题有“函数方程思想”和“数形结合思想”两种思路,等价转化求解,重要的是发挥“圆的平面几何性质(如半径、半弦长、弦心距构成直角三角形,切线长定理、割线定理、弦切角定理等等)的作用!”

(1)过圆 上一点 圆的切线方程是: ,

过圆 上一点 圆的切线方程是: ,

过圆 上一点 圆的切线方程是: .

如果点 在圆外,那么上述直线方程表示过点 两切线上两切点的“切点弦”方程.

如果点 在圆内,那么上述直线方程表示与圆相离且垂直于 ( 为圆心)的直线方程, ( 为圆心 到直线的距离).

7.曲线 与 的交点坐标 方程组 的解;

过两圆 、 交点的圆(公共弦)系为 ,当且仅当无平方项时, 为两圆公共弦所在直线方程.

八、圆锥曲线

1.圆锥曲线的两个定义,及其“括号”内的限制条件,在圆锥曲线问题中,如果涉及到其两焦点(两相异定点),那么将优先选用圆锥曲线第一定义;如果涉及到其焦点、准线(一定点和不过该点的一定直线)或离心率,那么将优先选用圆锥曲线第二定义;涉及到焦点三角形的问题,也要重视焦半径和三角形中正余弦定理等几何性质的应用.

(1)注意:①圆锥曲线第一定义与配方法的综合运用;

②圆锥曲线第二定义是:“点点距为分子、点线距为分母”,椭圆 点点距除以点线距商是小于1的正数,双曲线 点点距除以点线距商是大于1的正数,抛物线 点点距除以点线距商是等于1.③圆锥曲线的焦半径公式如下图:

2.圆锥曲线的几何性质:圆锥曲线的对称性、圆锥曲线的范围、圆锥曲线的特殊点线、圆锥曲线的变化趋势.其中 ,椭圆中 、双曲线中 .

重视“特征直角三角形、焦半径的最值、焦点弦的最值及其‘顶点、焦点、准线等相互之间与坐标系无关的几何性质’”,尤其是双曲线中焦半径最值、焦点弦最值的特点.

注意:等轴双曲线的意义和性质.

3.在直线与圆锥曲线的位置关系问题中,有“函数方程思想”和“数形结合思想”两种思路,等价转化求解.特别是:

①直线与圆锥曲线相交的必要条件是他们构成的方程组有实数解,当出现一元二次方程时,务必“判别式≥0”,尤其是在应用韦达定理解决问题时,必须先有“判别式≥0”.

②直线与抛物线(相交不一定交于两点)、双曲线位置关系(相交的四种情况)的特殊性,应谨慎处理.

③在直线与圆锥曲线的位置关系问题中,常与“弦”相关,“平行弦”问题的关键是“斜率”、“中点弦”问题关键是“韦达定理”或“小小直角三角形”或“点差法”、“长度(弦长)”问题关键是长度(弦长)公式

( , , )或“小小直角三角形”.

④如果在一条直线上出现“三个或三个以上的点”,那么可选择应用“斜率”为桥梁转化.

4.要重视常见的寻求曲线方程的方法(待定系数法、定义法、直译法、代点法、参数法、交轨法、向量法等), 以及如何利用曲线的方程讨论曲线的几何性质(定义法、几何法、代数法、方程函数思想、数形结合思想、分类讨论思想和等价转化思想等),这是解析几何的两类基本问题,也是解析几何的基本出发点.

注意:①如果问题中涉及到平面向量知识,那么应从已知向量的特点出发,考虑选择向量的几何形式进行“摘帽子或脱靴子”转化,还是选择向量的代数形式进行“摘帽子或脱靴子”转化.

②曲线与曲线方程、轨迹与轨迹方程是两个不同的概念,寻求轨迹或轨迹方程时应注意轨迹上特殊点对轨迹的“完备性与纯粹性”的影响.

③在与圆锥曲线相关的综合题中,常借助于“平面几何性质”数形结合(如角平分线的双重身份)、“方程与函数性质”化解析几何问题为代数问题、“分类讨论思想”化整为零分化处理、“求值构造等式、求变量范围构造不等关系”等等.

九、直线、平面、简单多面体

1.计算异面直线所成角的关键是平移(补形)转化为两直线的夹角计算

2.计算直线与平面所成的角关键是作面的垂线找射影,或向量法(直线上向量与平面法向量夹角的余角),三余弦公式(最小角定理, ),或先运用等积法求点到直线的距离,后虚拟直角三角形求解.注:一斜线与平面上以斜足为顶点的角的两边所成角相等 斜线在平面上射影为角的平分线.

3.空间平行垂直关系的证明,主要依据相关定义、公理、定理和空间向量进行,请重视线面平行关系、线面垂直关系(三垂线定理及其逆定理)的桥梁作用.注意:书写证明过程需规范.

特别声明:

①证明计算过程中,若有“中点”等特殊点线,则常借助于“中位线、重心”等知识转化.

②在证明计算过程中常将运用转化思想,将具体问题转化 (构造) 为特殊几何体(如三棱锥、正方体、长方体、三棱柱、四棱柱等)中问题,并获得去解决.

③如果根据已知条件,在几何体中有“三条直线两两垂直”,那么往往以此为基础,建立空间直角坐标系,并运用空间向量解决问题.

4.直棱柱、正棱柱、平行六面体、长方体、正方体、正四面体、棱锥、正棱锥关于侧棱、侧面、对角面、平行于底的截面的几何体性质.

如长方体中:对角线长 ,棱长总和为 ,全(表)面积为 ,(结合 可得关于他们的等量关系,结合基本不等式还可建立关于他们的不等关系式), ;

如三棱锥中:侧棱长相等(侧棱与底面所成角相等) 顶点在底上射影为底面外心,侧棱两两垂直(两对对棱垂直) 顶点在底上射影为底面垂心,斜高长相等(侧面与底面所成相等)且顶点在底上在底面内 顶点在底上射影为底面内心.

如正四面体和正方体中:

5.求几何体体积的常规方法是:公式法、割补法、等积(转换)法、比例(性质转换)法等.注意:补形:三棱锥 三棱柱 平行六面体 分割:三棱柱中三棱锥、四三棱锥、三棱柱的体积关系是 .

6.多面体是由若干个多边形围成的几何体.棱柱和棱锥是特殊的多面体.

正多面体的每个面都是相同边数的正多边形,以每个顶点为其一端都有相同数目的棱,这样的多面体只有五种, 即正四面体、正六面体、正八面体、正十二面体、正二十面体.

9.球体积公式 ,球表面积公式 ,是两个关于球的几何度量公式.它们都是球半径及的函数.

十、导 数

1.导数的意义:曲线在该点处的切线的斜率(几何意义)、瞬时速度、边际成本(成本为因变量、产量为自变量的函数的导数). , (C为常数), , .

2.多项式函数的导数与函数的单调性:

在一个区间上 (个别点取等号) 在此区间上为增函数.

在一个区间上 (个别点取等号) 在此区间上为减函数.

3.导数与极值、导数与最值:

(1)函数 在 处有 且“左正右负” 在 处取极大值;

函数 在 处有 且“左负右正” 在 处取极小值.

注意:①在 处有 是函数 在 处取极值的必要非充分条件.

②求函数极值的方法:先找定义域,再求导,找出定义域的分界点,列表求出极值.特别是给出函数极大(小)值的条件,一定要既考虑 ,又要考虑验“左正右负”(“左负右正”)的转化,否则条件没有用完,这一点一定要切记.

③单调性与最值(极值)的研究要注意列表!

(2)函数 在一闭区间上的最大值是此函数在此区间上的极大值与其端点值中的“最大值”;

函数 在一闭区间上的最小值是此函数在此区间上的极小值与其端点值中的“最小值”;

注意:利用导数求最值的步骤:先找定义域 再求出导数为0及导数不存在的的点,然后比较定义域的端点值和导数为0的点对应函数值的大小,其中最大的就是最大值,最小就为最小值.

4.应用导数求曲线的切线方程,要以“切点坐标”为桥梁,注意题目中是“处?”还是“过?”,对“二次抛物线”过抛物线上一点的切线 抛物线上该点处的切线,但对“三次曲线”过其上一点的切线包含两条,其中一条是该点处的切线,另一条是与曲线相交于该点.

5.注意应用函数的导数,考察函数单调性、最值(极值),研究函数的性态,数形结合解决方程不等式等相关问题.

十一、概率、统计、算法(略) 赞同

2009年和2010年江苏理科数学高考卷试题和答案

(Ⅲ)范例分析

b)∈M,且对M中的其它元素(c,d),总有c≥a,则a=____.

分析:读懂并能揭示问题中的数学实质,将是解决该问题的突破口.怎样理解“对M中的其它元素(c,d),总有c≥a”?M中的元素又有什么特点?

解:依题可知,本题等价于求函数x=f(y)=(y+3)?|y-1|+(y+3)

(2)当1≤y≤3时,

所以当y=1时,xmin=4.

说明:题设条件中出现集合的形式,因此要认清集合元素的本质属性,然后结合条件,揭示其数学实质.即求集合M中的元素满足关系式

例2.解关于 的不等式:

分析:本例主要复习含绝对值不等式的解法,分类讨论的思想。本题的关键不是对参数 进行讨论,而是去绝对值时必须对末知数进行讨论,得到两个不等式组,最后对两个不等式组的解集求并集,得出原不等式的解集。

解:当

例3. 己知三个不等式:① ② ③

(1)若同时满足①、②的 值也满足③,求m的取值范围;

(2)若满足的③ 值至少满足①和②中的一个,求m的取值范围。

分析:本例主要综合复习整式、分式不等式和含绝对值不等的解法,以及数形结合思想,解本题的关键弄清同时满足①、②的 值的满足③的充要条件是:③对应的方程的两根分别在 和 内。不等式和与之对应的方程及函数图象有着密不可分的内在联系,在解决问题的过程中,要适时地联系它们之间的内在关系。

解:记①的解集为A,②的解集为B,③的解集为C。

解①得A=(-1,3);解②得B=

(1) 因同时满足①、②的 值也满足③,A B C

设 ,由 的图象可知:方程的小根小于0,大根大于或等于3时,即可满足

(2) 因满足③的 值至少满足①和②中的一个, 因

此 小根大于或等于-1,大根小于或等于4,因而

说明:同时满足①②的x值满足③的充要条件是:③对应的方程2x +mx-1=0的两根分别在(-∞,0)和[3,+∞)内,因此有f(0)<0且f(3)≤0,否则不能对A∩B中的所有x值满足条件.不等式和与之对应的方程及图象是有着密不可分的内在联系的,在解决问题的过程中,要适时地联系它们之间的内在关系.

例4.已知对于自然数a,存在一个以a为首项系数的整系数二次三项式,它有两个小于1的正根,求证:a≥5.

分析:回忆二次函数的几种特殊形式.设f(x)=ax +bx+c(a≠0).①

顶点式.f(x)=a(x-x ) +f(x )(a≠0).这里(x ,f(x ))是二次函数的顶点,x =

))、(x ,f(x ))、(x ,f(x ))是二次函数图象上的不同三点,则系数a,b,c可由

证明:设二次三项式为:f(x)=a(x-x )(x-x ),a∈N.

依题意知:0<x <1,0<x <1,且x ≠x .于是有

f(0)>0,f(1)>0.

又f(x)=ax -a(x +x )x+ax x 为整系数二次三项式,

所以f(0)=ax x 、f(1)=a?(1-x )(1-x )为正整数.故f(0)≥1,f(1)≥1.

从而 f(0)?f(1)≥1. ①

另一方面,

且由x ≠x 知等号不同时成立,所以

由①、②得,a >16.又a∈N,所以a≥5.

说明:二次函数是一类被广泛应用的函数,用它构造的不等式证明问题,往往比较灵活.根据题设条件恰当选择二次函数的表达形式,是解决这类问题的关键.

例5.设等差数列{a }的首项a1>0且Sm=Sn(m≠n).问:它的前多少项的和最大?

分析:要求前n项和的最大值,首先要分析此数列是递增数列还是递减数列.

解:设等差数列{a }的公差为d,由Sm=Sn得

ak≥0,且ak+1<0.

(k∈N).

说明:诸多数学问题可归结为解某一不等式(组).正确列出不等式(组),并分析其解在具体问题的意义,是得到合理结论的关键.

例6.若二次函数y=f(x)的图象经过原点,且1≤f(-1)≤2,3≤f(1)≤4,求f(-2)的范围.

分析:要求f(-2)的取值范围,只需找到含人f(-2)的不等式(组).由于y=f(x)是二次函数,所以应先将f(x)的表达形式写出来.即可求得f(-2)的表达式,然后依题设条件列出含有f(-2)的不等式(组),即可求解.

解:因为y=f(x)的图象经过原点,所以可设y=f(x)=ax2+bx.于是

解法一(利用基本不等式的性质)

不等式组(Ⅰ)变形得

(Ⅰ)所以f(-2)的取值范围是[6,10].

解法二(数形结合)

建立直角坐标系aob,作出不等式组(Ⅰ)所表示的区域,如图6中的阴影部分.因为f(-2)=4a-2b,所以4a-2b-f(-2)=0表示斜率为2的直线系.如图6,当直线4a-2b-f(-2)=0过点A(2,1),B(3,1)时,分别取得f(-2)的最小值6,最大值10.即f(-2)的取值范围是:6≤f(-2)≤10.

解法三(利用方程的思想)

又f(-2)=4a-2b=3f(-1)+f(1),而

1≤f(-1)≤2,3≤f(1)≤4, ①

所以 3≤3f(-1)≤6. ②

①+②得4≤3f(-1)+f(1)≤10,即6≤f(-2)≤10.

说明:(1)在解不等式时,要求作同解变形.要避免出现以下一种错解:

2b,8≤4a≤12,-3≤-2b≤-1,所以 5≤f(-2)≤11.

(2)对这类问题的求解关键一步是,找到f(-2)的数学结构,然后依其数学结构特征,揭示其代数的、几何的本质,利用不等式的基本性质、数形结合、方程等数学思想方法,从不同角度去解决同一问题.若长期这样思考问题,数学的素养一定会迅速提高.

例7.(2002 江苏)己知 ,

(1)

(2) ,证明:对任意 , 的充要条件是 ;

(3) 讨论:对任意 , 的充要条件。

证明:(1)依题意,对任意 ,都有

(2)充分性:

必要性:对任意

(3)

而当

例8.若a>0,b>0,a3+b3=2.求证a+b≤2,ab≤1.

分析:由条件a3+b3=2及待证的结论a+b≤2的结构入手,联想它们之间的内在联系,不妨用作差比较法或均值不等式或构造方程等等方法,架起沟通二者的“桥梁”.

证法一 (作差比较法)

因为a>0,b>0,a3+b3=2,所以

(a+b)3-23=a3+b3+3a2b+3ab2-8=3a2b+3ab2-6

=3[ab(a+b)-2]=3[ab(a+b)-(a3+b3)]=-3(a+b)(a-b)2≤0,

即 (a+b)3≤23.

证法二 (平均值不等式—综合法)

因为a>0,b>0,a3+b3=2,所以

所以a+b≤2,ab≤1.

说明:充分发挥“1”的作用,使其证明路径显得格外简捷、漂亮.

证法三 (构造方程)

设a,b为方程x2-mx+n=0的两根.则

因为a>0,b>0,所以m>0,n>0且Δ=m2-4n≥0.①

因此2=a3+b3=(a+b)(a2-ab+b2)=(a+b)[(a+b)2-3ab]=m[m2-3n],所以

所以a+b≤2.

由2≥m得4≥m2,又m2≥4n,所以4≥4n,即n≤1.所以 ab≤1.

说明:认真观察不等式的结构,从中发现与已学知识的内在联系,就能较顺利地找到解决问题的切入点.

证法四 (恰当的配凑)

因为a>0,b>0,a3+b3=2,所以

2=a3+b3=(a+b)(a2+b2-ab)≥(a+b)(2ab-ab)=ab(a+b),

于是有6≥3ab(a+b),从而

8≥3ab(a+b)+2=3a2b+3ab2+a3+b3=(a+b)3,

所以a+b≤2.(以下略)

即a+b≤2.(以下略)

证法六 (反证法)

设a+b>2,则

a3+b3=(a+b)(a2-ab+b2)=(a+b)[(a+b)2-3ab]>2(22-3ab).

因为a3+b3=2,所以2>2(4-3ab),因此ab>1. ①

另一方面,2=a3+b3=(a+b)(a2+b2-ab)≥(a+b)(2ab-ab)=(a+b)?ab>2ab,

所以ab<1. ②

于是①与②矛盾,故a+b≤2.(以下略)

说明:此题用了六种不同的方法证明,这几种证法都是证明不等式的常用方法.

例9.设函数f(x)=ax2+bx+c的图象与两直线y=x,y=-x,均不相

分析:因为x∈R,故|f(x)|的最小值若存在,则最小值由顶点确定,故设f(x)=a(x-x0)2+f(x0).

证明:由题意知,a≠0.设f(x)=a(x-x0)2+f(x0),则

又二次方程ax2+bx+c=±x无实根,故

Δ1=(b+1)2-4ac<0,

Δ2=(b-1)2-4ac<0.

所以(b+1)2+(b-1)2-8ac<0,即2b2+2-8ac<0,即

b2-4ac<-1,所以|b2-4ac|>1.

说明:从上述几个例子可以看出,在证明与二次函数有关的不等式问题时,如果针对题设条件,合理取二次函数的不同形式,那么我们就找到了一种有效的证明途径.

例10.(2002理)某城市2001年末汽车保有量为30万辆,预计此后每年报废上一年末汽车保有量的6%,并且每年新增汽车数量相同。为了保护城市环境,要求该城市汽车保有量不超过60万辆,那么每年新增汽车数量不应超过多少辆?

解:设2001年末的汽车保有量为 ,以后每年末的汽车保有量依次为 ,每年新增汽车 万辆。

由题意得

例11.已知奇函数

知函数

分析:这是一道比较综合的问题,考查很多函数知识,通过恰当换元,使问题转化为二次函数在闭区间上的最值问题。

要使

10 当

30当

综上:

例12.如图,某隧道设计为双向四车道,车道总宽22米,要求通行车辆限高4.5米,隧道全长2.5千米,隧道的拱线近似地看成半个椭圆形状。

(1)若最大拱为6米,则隧道设计的拱宽 是多少?

(2)若最大拱不小于6米,则应如何设计拱和拱宽 ,才能使半个椭圆形隧道的土方工程最小?

(半个椭圆的面积公式为s= 柱体体积为:底面积乘以高, , 本题结果均精确到0.1米)

分析:本题为2003年上海高考题,考查运用几何、不等式等解决应用题的能力及运算能力。

解:1)建立如图所示直角坐标系,则P(11,4.5)

椭圆方程为:

将b=h=6与点P坐标代入椭圆方程得

故隧道拱宽约为33.3米

2)由椭圆方程

故当拱高约为6.4米,拱宽约为31.1米时,土方工程量最小.

例13.已知n∈N,n>1.求证

分析:虽然待证不等式是关于自然数的命题,但不一定选用数学归纳法,观其“形”,它具有较好规律,因此不妨用构造数列的方法进行解.

说明:因为数列是特殊的函数,所以可以因问题的数学结构,利用函数的思想解决.

例14.已知函数

分析:本例主要复习函数、不等式的基础知识,绝对值不等式及函数不等式的证明技巧。基本思路先将函数不等式转化为代数不等式,利用绝对值不等式的性质及函数的性质。证明(1)再利用二项展开式及基本不等式的证明(2)。

证明:(1)

当且仅当 时,上式取等号。

(2) 时,结论显然成立

当 时,

例15.(2001年全国理)己知

(1)

(2)

证明:(1)

同理

(2)由二项式定理有

因此

四、强化训练

1.已知非负实数 , 满足 且 ,则 的最大值是( )

A. B. C. D.

2.已知命题p:函数 的值域为R,命题q:函数

是减函数。若p或q为真命题,p且q为命题,则实数a的取值范围是 ( )

A.a≤1 B.a<2 C.1<a<2 D.a≤1或a≥2

3. 解关于 的不等式 >0

4.求a,b的值,使得关于x的不等式ax2+bx+a2-1≤0的解集分别是:

(1)[-1,2];(2)(-∞,-1]∪[2,+∞);(3){2};(4)[-1,+∞).

5. 解关于 的不等式

6.(2002北京文)数列 由下列条件确定:

(1)证明:对于 ,

(2)证明:对于 .

7.设P=(log2x) +(t-2)log2x-t+1,若t在区间[-2,2]上变动时,P恒为正值,试求x的变化范围.

8.已知数列 中,

b1=1,点P(bn,bn+1)在直线x-y+2=0上。

Ⅰ)求数列

Ⅱ)设 的前n项和为Bn, 试比较 。

Ⅲ)设Tn=

五、参考答案

1.解:画出图象,由线性规划知识可得,选D

2.解:命题p为真时,即真数部分能够取到大于零的所有实数,故二次函数 的判别式 ,从而 ;命题q为真时, 。

若p或q为真命题,p且q为命题,故p和q中只有一个是真命题,一个是命题。

若p为真,q为时,无解;若p为,q为真时,结果为1<a<2,故选C.

3.分析:本题主要复习分式不等式的解法、分类讨论的思想及利用序轴标根法解不等式的基本步骤。本题的关键是对分母分解因式,将原不等式等价转化为

和比较 与 及3的大小,定出分类方法。

解:原不等式化为:

(1) 当 时,由图1知不等式的解集为

(2) 当

(3) 当

4.分析:方程的根、函数的性质和图象都与不等式的解密切相关,要善于把它们有机地联系起来,相互转化和相互交通.

解(1) 由题意可知,a>0且-1,2是方程ax2+bx+a2-1≤0的根,所以

(3)由题意知,2是方程ax2+bx+a2-1=0的根,所以

4a+2b+a2-1=0. ①

又{2}是不等式ax2+bx+a2-1≤0的解集,所以

(4)由题意知,a=0.b<0,且-1是方程bx+a2-1=0的根,即-b+a2-1=0,所以

a=0,b=-1.

说明:二次函数与一元二次方程、一元二次不等式之间存在着密切的联系.在解决具体的数学问题时,要注意三者之间相互联系相互渗透,并在一定条件下相互转换。

5.分析:在不等式的求解中,换元法和图解法是常用的技巧,通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数,数形结合,则可将不等式的解化归为直观,形象的图象关系,对含参数的不等式,运用图解法,还可以使得分类标准更加明晰。

解:设 ,原不等式化为 ,在同一坐标系中作出两函数图象

故(1)当

(2)

(3)当 时,原不等式的解集为φ

综上所述,当 时,解集为 );当 时,解集为

时,解集为φ。

6.证明:(1)

(2)当 时,

=

7.分析:要求x的变化范围,显然要依题设条件寻找含x的不等式(组),这就需要认真思考条件中“t在区间[-2,2]上变动时,P恒为正值.”的含义.你是怎样理解的?如果继续思考有困难、请换一个角度去思考.在所给数学结构中,右式含两个字母x、t,t是在给定区间内变化的,而求的是x的取值范围,能想到什么?

解:设P=f(t)=(log2x-1)t+log22x-2log2x+1.因为 P=f(t)在top直角坐标系内是一直线,所以t在区间[-2,2]上变动时,P恒为正值的充要条件

解得log2x>3或log2x<-1.

说明:改变看问题的角度,构造关于t的一次函数,灵活运用函数的思想,使难解的问题转化为熟悉的问题.

8.分析:本题主要复习数列通项、求和及不等式的有关知识。

略解:Ⅰ)

Ⅱ)Bn=1+3+5+…+(2n-1)=n2

Ⅲ)Tn= ①

①-②得

2006年上海数学高考题

2010 年江苏高考数学试题 一、填空题 1、设集合A={-1,1,3},B={a+2,a 2 +4},A∩B={3},则实数a=______▲________ 2、设复数z满足z(2-3i)=6+4i(其中i为虚数单位),则z的模为______▲________ 3、盒子中有大小相同的3只小球,1只黑球,若从中随机地摸出两只球,两只球颜色不同的概率是_▲__ 4、某棉纺厂为了了解一批棉花的质量,从中随机抽取了100根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标),所得数据都在区间[5,40]中,其频率分布直方图如图所示,则其抽样的100根中,有_▲___根在棉花纤维的长度小于20mm。 5、设函数f(x)=x(e x +ae -x ),x∈ R ,是偶函数,则实数a=_______▲_________ 6、在平面直角坐标系xOy中,双曲线 上一点M,点M的横坐标是3,则M到双曲线右焦点的距离是___▲_______ 7、右图是一个算法的流程图,则输出S的值是______▲_______ 开始 S←1 n←1 S←S+2 n S≥33 n←n+1 否 输出S 结束 是 8、函数y=x 2 (x>0)的图像在点(a k ,a k 2 )处的切线与x轴交点的横坐标为a k+1 ,k为正整数,a 1 =16,则a 1 +a 3 +a 5 =____▲_____ 9、在平面直角坐标系xOy中,已知圆 上有且仅有四个点到直线12x-5y+c=0的距离为1,则实数c的取值范围是______▲_____ 10、定义在区间 上的函数y=6cosx的图像与y=5tanx的图像的交点为P,过点P作PP 1 ⊥x轴于点P 1 ,直线PP 1 与y=sinx的图像交于点P 2 ,则线段P 1 P 2 的长为_______▲_____ 11、已知函数 ,则满足不等式 的x的范围是____▲____ 12、设实数x,y满足3≤ ≤8,4≤ ≤9,则 的最大值是_____▲____ 13、在锐角三角形ABC,A、B、C的对边分别为a、b、c, ,则 __▲ 14、将边长为1的正三角形薄片,沿一条平行于底边的直线剪成两块,其中一块是梯形,记S= ,则S的最小值是_______▲_______ 二、解答题 15、(14分)在平面直角坐标系xOy中,点A(-1,-2),B(2,3),C(-2,-1) (1)求以线段AB、AC为邻边的平行四边形两条对角线的长 (2)设实数t满足( )· =0,求t的值 16、(14分)如图,四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90 0 (1)求证:PC⊥BC (2)求点A到平面PBC的距离 17、(14分)某兴趣小组测量电视塔AE的高度H(单位m),如示意图,垂直放置的标杆BC高度h=4m,仰角∠ABE=α,∠ADE=β (1)该小组已经测得一组α、β的值,tanα=1.24,tanβ=1.20,,请据此算出H的值 (2)该小组分析若干测得的数据后,发现适当调整标杆到电视塔的距离d(单位m),使α与β之差较大,可以提高测量精确度,若电视塔实际高度为125m,问d为多少时,α-β最大 A B O F 18.(16分)在平面直角坐标系 中,如图,已知椭圆 的左右顶点为A,B,右顶点为F,设过点T( )的直线TA,TB与椭圆分别交于点M , ,其中m>0, ①设动点P满足 ,求点P的轨迹 ②设 ,求点T的坐标 ③设 ,求证:直线MN必过x轴上的一定点 (其坐标与m无关) 19.(16分)设各项均为正数的数列 的前n项和为 ,已知 ,数列 是公差为 的等差数列. ①求数列 的通项公式(用 表示) ②设 为实数,对满足 的任意正整数 ,不等式 都成立。求证: 的最大值为 20.(16分)设 使定义在区间 上的函数,其导函数为 .如果存在实数 和函数 ,其中 对任意的 都有 >0,使得 ,则称函数 具有性质 . (1)设函数 ,其中 为实数 ①求证:函数 具有性质 ②求函数 的单调区间 (2)已知函数 具有性质 ,给定 , ,且 ,若| |<| |,求 的取值范围 理科附加题 21(从以下四个题中任选两个作答,每题10分) (1)几何证明选讲 AB是⊙O的直径,D为⊙O上一点,过点D作⊙O的切线交AB延长线于C,若DA=DC,求证AB=2BC (2)矩阵与变换 在平面直角坐标系xOy中,A(0,0),B(-3,),C(-2,1),设k≠0,k∈R,M= ,N= ,点A、B、C在矩阵MN对应的变换下得到点A 1 ,B 1 ,C 1 ,△A 1 B 1 C 1 的面积是△ABC面积的2倍,求实数k的值 (3)参数方程与极坐标 在极坐标系中,圆ρ=2cosθ与直线3ρcosθ+4ρsinθ+a=0相切,求实数a的值 (4)不等式证明选讲 已知实数a,b≥0,求证: 22、(10分)某厂生产甲、乙两种产品,生产甲产品一等品80%,二等品20%;生产乙产品,一等品90%,二等品10%。生产一件甲产品,如果是一等品可获利4万元,若是二等品则要亏损1万元;生产一件乙产品,如果是一等品可获利6万元,若是二等品则要亏损2万元。设生产各种产品相互独立 (1)记x(单位:万元)为生产1件甲产品和件乙产品可获得的总利润,求x的分布列 (2)求生产4件甲产品所获得的利润不少于10万元的概率 23、(10分)已知△ABC的三边长为有理数 (1)求证cosA是有理数 (2)对任意正整数n,求证cosnA也是有理数 绝密★启用前 学科网 2009年普通高等学校招生全国统一考试(江苏卷) 学科网 数学Ⅰ 学科网 注 意 事 项 考生在答题前请认真阅读本注意事项及各题答题要求 1.本试卷共4页,包含填空题(第1题——第14题)、解答题(第15题——第20题)。本卷满分160分,考试时间为120分钟。考试结束后,请将本卷和答题卡一并交回。 2.答题前,请您务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。 3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与您本人是否相符。 4.请在答题卡上按照晤顺序在对应的答题区域内作答,在其他位置作答一律无效。作答必须用0.5毫米黑色墨水的签字笔。请注意字体工整,笔迹清楚。 5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗。 6.请保持答题卡卡面清洁,不要折叠、破损。 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 参考公式: 学科网 样本数据 的方差 学科网 一、填空题:本大题共 14 小题,每小题 5 分,共 70 分。请把答案填写在答题卡相应的位置上 . 学科网 1.若复数 ,其中 是虚数单位,则复数 的实部为★. 学科网 2.已知向量 和向量 的夹角为 , ,则向量 和向量 的数量积 ★ . 学科网 3.函数 的单调减区间为 ★ . 学科网 1 1 O x y 4.函数 为常数, 在闭区间 上的图象如图所示,则 ★ . 学科网 学科网 5.现有5根竹竿,它们的长度(单位:m)分别为2.5,2.6,2.7,2.8,2.9,若从中一次随机抽取2根竹竿,则它们的长度恰好相差0.3m的概率为 ★ . 学科网 6.某校甲、乙两个班级各有5名编号为1,2,3,4,5的学生进行投篮练习,每人投10次,投中的次数如下表: 学科网 学生 1号 2号 3号 4号 5号 甲班 6 7 7 8 7 乙班 6 7 6 7 9 开始 输出 结束 Y N 则以上两组数据的方差中较小的一个为 ★ . 学科网 7.右图是一个算法的流程图,最后输出的 ★ . 学科网 8.在平面上,若两个正三角形的连长的比为1:2,则它们的面积比为1:4,类似地,在宣传部,若两个正四面体的棱长的比为1:2,则它们的体积比为 学科网 9.在平面直角坐标系 中,点P在曲线 上,且在第二象限内,已知曲线C在点P处的切线的斜率为2,则点P的坐标为 ★ . 学科网 10.已知 ,函数 ,若实数 满足 ,则 的大小关系为 ★ . 学科网 11.已知集合 , ,若 则实数 的取值范围是 ,其中 ★ . 学科网 12.设和 为不重合的两个平面,给出下列命题: 学科网 (1)若 内的两条相交直线分别平行于 内的两条直线,则 平行于 ; 学科网 (2)若 外一条直线 与 内的一条直线平行,则和 平行; 学科网 (3)设和 相交于直线 ,若 内有一条直线垂直于 ,则和 垂直; 学科网 (4)直线 与 垂直的充分必要条件是 与 内的两条直线垂直. 学科网 上面命题中,真命题的序号 ★ (写出所有真命题的序号). 学科网 13.如图,在平面直角坐标系 中, 为椭圆 的四个顶点, 为其右焦点,直线 与直线 相交于点T,线段 与椭圆的交点 恰为线段 的中点,则该椭圆的离心率为 ★ . 学科网 x y A 1 B 2 A 2 O T M 学科网 学科网 14.设 是公比为 的等比数列, ,令 若数列 有连续四项在集合 中,则 ★ . 学科网 学科网 二、解答题:本大题共 6 小题,共计 90 分,请在答题卡指定区域内作答,解答时应写出文字说明、证明或演算步骤 . 学科网 15.(本小题满分14分) 学科网 设向量 学科网 (1)若与 垂直,求 的值; 学科网 (2)求 的最大值; 学科网 (3)若 ,求证: ∥ . 学科网 16.(本小题满分14分) 学科网 A B C A 1 B 1 C 1 E F D 如图,在直三棱柱 中, 分别是 的中点,点在上, 学科网 求证:(1) ∥ 学科网 (2) 学科网 17.(本小题满分14分) 学科网 设 是公差不为零的等差数列, 为其前 项和,满足 学科网 (1)求数列 的通项公式及前 项和 ; 学科网 (2)试求所有的正整数 ,使得 为数列 中的项. 学科网 18.(本小题满分16分) 学科网 在平面直角坐标系 中,已知圆 和圆 学科网 x y O 1 1 . . 学科网 (1)若直线 过点 ,且被圆 截得的弦长为 ,求直线 的方程; 学科网 (2)设P为平面上的点,满足:存在过点P的无穷多对互相垂的直线 ,它们分别与圆 和圆 相交,且直线 被圆 截得的弦长与直线 被圆 截得的弦长相等,试求所有满足条件的点P的坐标. 学科网 19.(本小题满分16分) 学科网 按照某学者的理论,设一个人生产某产品单件成本为 元,如果他卖出该产品的单价为 元,则他的满意度为 ;如果他买进该产品的单价为 元,则他的满意度为 .如果一个人对两种交易(卖出或买进)的满意度分别为 和 ,则他对这两种交易的综合满意度为 . 学科网 现设甲生产A、B两种产品的单件成本分别为12元和5元,乙生产A、B两种产品的单件成本分别为3元和20元,设产品A、B的单价分别为 元和 元,甲买进A与卖出B的综合满意度为 ,乙卖出A与买进B的综合满意度为 学科网 (1) 求和 关于 、 的表达式;当时,求证: = ; 学科网 (2) 设 ,当、 分别为多少时,甲、乙两人的综合满意度均最大?最大的综合满意度为多少? 学科网 (3) 记(2)中最大的综合满意度为 ,试问能否适当选取 、 的值,使得 和 同时成立,但等号不同时成立?试说明理由。 学科网 学科网 20.(本小题满分16分) 学科网 设 为实数,函数 . 学科网 (1) 若 ,求 的取值范围; 学科网 (2) 求 的最小值; 学科网 (3) 设函数 ,直接写出(不需给出演算步骤)不等式 的解集. 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网

2006年上海高考数学试卷(文科)

一.填空题:(本大题共12小题,每小题4分,共48分)

1. 已知集合A = { –1 , 3 , 2m – 1 },集合B = { 3 , 4 }。若B ? A,则实数m =__。

2. 已知两条直线l1:ax + 3y – 3 = 0 , l2:4x + 6y – 1 = 0。若l1‖l2,则a =______。

3. 若函数f(x) = ax(a > 0且a ? 1)的反函数的图像过点( 2 , –1 ),则a =_____。

4. 计算: =__________。

5. 若复数z = ( m – 2 ) + ( m + 1 )i为纯虚数(i为虚数单位),其中m ? R,则| | =__________。

6. 函数y = sinxcosx的最小正周期是_____________。

7. 已知双曲线的中心在原点,一个顶点的坐标是( 3 , 0 ),且焦距与虚轴长之比为5:4,则双曲线的标准方程是________。

8. 方程log3( x2 – 10 ) = 1 + log3x的解是_______。

9. 已知实数x , y满足 ,则y – 2x的最大值是______。

10. 在一个小组中有8名女同学和4名男同学,从中任意地挑选2名同学担任交通安全宣传志愿者,那么选到的两名都是女同学的概率是__________。(结果用分数表示)

11. 若曲线|y|2 = 2x + 1与直线y = b没有公共点,则b的取值范围是________。

12. 如图,平面中两条直线l1和l2相交于点O。对于平面上任意一点M,若p , q分别是M到直线l1和l2的距离,则称有序非负实数对( p , q )是点M的“距离坐标”。根据上述定义,“距离坐标”是( 1 , 2 )的点的个数是________。

二.选择题:(本大题共4小题,每小题4分,共16分)

13. 如图,在平行四边形ABCD中,下列结论中错误的是( )

(A) (B)

(C) (D)

14. 如果a < 0 , b > 0,那么,下列不等式中正确的是( )

(A) (B) (C) a2 < b2 (D) |a| > |b|

15. 若空间中有两条直线,则“这两条直线为异面直线”是“这两条直线没有公共点”的( )

(A)充分非必要条件 (B)必要非充分条件

(C)充分必要条件 (D)既非充分又非必要条件

16. 如果一条直线与一个平面垂直,那么,称此直线与平面构成一个“正交线面对”,在一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“正交线面对”的个数是( )

(A) 48 (B) 18 (C)24 (D) 36

三.解答题:(本大题共6小题,共86分)

17.(本小题满分12分)

已知a是第一象限的角,且 ,求 的值。

18.(本小题满分12分)

如图,当甲船位于A处时获悉,在其正东方向相距20海里的B处有一艘渔船遇险等待营救。甲船立即前往救援,同时把消息告知在甲船的南偏西30°,相距10海里C处的乙船,试问乙船应朝北偏东多少度的方向沿直线前往B处救援(角度精确到1°)?

19.(本小题满分14分)

在直三棱柱ABC-A1B1C1中,?ABC = 90° , AB = BC = 1。

(1) 求异面直线B1C1与AC所成角的大小;

(2) 若直线A1C与平面ABC所成角为45°,求三棱锥A1-ABC的体积。

20.(本小题满分14分)

设数列{an}的前n项和为Sn,且对任意正整数n×an + Sn = 4096。

(1) 求数列{an}的通项公式;

(2) 设数列{log2an}的前n项和为Tn,对数列{Tn},从第几项起Tn < –509?

21.(本小题满分16分)

已知在平面直角坐标系xOy中的一个椭圆,它的中心在原点,左焦点为F( , 0 ),且右顶点为D( 2 , 0 ),设点A的坐标是( 1 , )。

(1) 求该椭圆的标准方程;

(2) 若是P椭圆上的动点,求线段PA中点M的轨迹方程;

(3) 过原点O的直线交椭圆于点B , C,求△ABC面积的最大值。

22.(本小题满分18分)

已知函数 有如下性质:如果常数a > 0,那么该函数在 上是减函数,在 上是增函数。

(1) 如果函数 在 上是减函数,在 上是增函数,求实常数b的值;

(2) 设常数c ? [ 1 , 4 ],求函数 ( 1 ? x ? 2 )的最大值和最小值;

(3) 当n是正整数时,研究函数 ( c > 0 )的单调性,并说明理由。

上海数学(文史类)参考答案

一、(第1题至笫12题)

1. 4 2. 2 3. 4. 5. 3 6.π 7.

8. 5 9. 0 10. 11.-1<b<1 12. 4

二、(第13题至笫16题)

13. C 14. A 15. A 16. D

三、(第17题至笫22题)

17.解: =

由已知可得sin ,

∴原式= .

18.解:连接BC,由余弦定理得BC2=202+102-2×20×10COS120°=700.

于是,BC=10 .

∵ , ∴sin∠ACB= ,

∵∠ACB<90° ∴∠ACB=41°

∴乙船应朝北偏东71°方向沿直线前往B处救援.

19.解:(1) ∵BC‖B1C1, ∴∠ACB为异面直线B1C1与AC所成角(或它的补角)

∵∠ABC=90°, AB=BC=1, ∴∠ACB=45°,

∴异面直线B1C1与AC所成角为45°.

(2) ∵AA1⊥平面ABC,

∠ACA1是A1C与平面ABC所成的角, ∠ACA =45°.

∵∠ABC=90°, AB=BC=1, AC= ,

∴AA1= .

∴三棱锥A1-ABC的体积V= S△ABC×AA1= .

20.解(1) ∵an+ Sn=4096, ∴a1+ S1=4096, a1 =2048.

当n≥2时, an= Sn-Sn-1=(4096-an)-(4096-an-1)= an-1-an

∴ = an=2048( )n-1.

(2) ∵log2an=log2[2048( )n-1]=12-n,

∴Tn= (-n2+23n).

由Tn<-509,解待n> ,而n是正整数,于是,n≥46.

∴从第46项起Tn<-509.

21.解(1)由已知得椭圆的半长轴a=2,半焦距c= ,则半短轴b=1.

又椭圆的焦点在x轴上, ∴椭圆的标准方程为

(2)设线段PA的中点为M(x,y) ,点P的坐标是(x0,y0),

由 x= 得 x0=2x-1

y= y0=2y-

由,点P在椭圆上,得 ,

∴线段PA中点M的轨迹方程是 .

(3)当直线BC垂直于x轴时,BC=2,因此△ABC的面积S△ABC=1.

当直线BC不垂直于x轴时,说该直线方程为y=kx,代入 ,

解得B( , ),C(- ,- ),

则 ,又点A到直线BC的距离d= ,

∴△ABC的面积S△ABC=

于是S△ABC=

由 ≥-1,得S△ABC≤ ,其中,当k=- 时,等号成立.

∴S△ABC的最大值是 .

22.解(1) 由已知得 =4, ∴b=4.

(2) ∵c∈[1,4], ∴ ∈[1,2],

于是,当x= 时, 函数f(x)=x+ 取得最小值2 .

f(1)-f(2)= ,

当1≤c≤2时, 函数f(x)的最大值是f(2)=2+ ;

当2≤c≤4时, 函数f(x)的最大值是f(1)=1+c.

(3)设0<x1<x2,g(x2)-g(x1)= .

当 <x1<x2时, g(x2)>g(x1), 函数g(x)在[ ,+∞)上是增函数;

当0<x1<x2< 时, g(x2)>g(x1), 函数g(x)在(0, ]上是减函数.

当n是奇数时,g(x)是奇函数,

函数g(x) 在(-∞,- ]上是增函数, 在[- ,0)上是减函数.

当n是偶数时, g(x)是偶函数,

函数g(x)在(-∞,- )上是减函数, 在[- ,0]上是增函数.

文章标签: # 直线 # 函数 # 学科