您现在的位置是: 首页 > 教育资讯 教育资讯

高考圆锥曲线解题,高考数学圆锥曲线小题

tamoadmin 2024-05-31 人已围观

简介1.高中数学圆锥曲线题求解答2.高中数学圆锥曲线解题技巧3.圆锥曲线的知识点及解题方法?4.高中数学圆锥曲线秒杀技巧是什么?圆锥曲线的综合问题:1、圆锥曲线的范围问题有两种常用方法:?(1)寻找合理的不等式,常见有△>0和弦的中点在曲线内部;?(2)所求量可表示为另一变量的函数,求函数的值域。?2、圆锥曲线的最值、定值及过定点等难点问题。(1)从几何角度来看,直线和圆锥曲线有三种位置关系:相离、相

1.高中数学圆锥曲线题求解答

2.高中数学圆锥曲线解题技巧

3.圆锥曲线的知识点及解题方法?

4.高中数学圆锥曲线秒杀技巧是什么?

高考圆锥曲线解题,高考数学圆锥曲线小题

圆锥曲线的综合问题:

1、圆锥曲线的范围问题有两种常用方法:?

(1)寻找合理的不等式,常见有△>0和弦的中点在曲线内部;?

(2)所求量可表示为另一变量的函数,求函数的值域。?

2、圆锥曲线的最值、定值及过定点等难点问题。

(1)从几何角度来看,直线和圆锥曲线有三种位置关系:相离、相切和相交,相离是直线和圆锥曲线没有公共点,相切是直线和圆锥曲线有唯一公共点,相交是直线与圆锥曲线有两个不同的公共点,并特别注意直线与双曲线、抛物线有唯一公共点时,并不一定是相切,如直线与双曲线的渐近线平行时,与双曲线有唯一公共点,但这时直线与双曲线相交;直线平行(重合)于抛物线的对称轴时,与抛物线有唯一公共点,但这时直线与抛物线相交,故直线与双曲线、抛物线有唯一公共点时可能是相切,也可能是相交,直线与这两种曲线相交,可能有两个交点,也可能有一个交点,从而不要以公共点的个数来判断直线与曲线的位置关系,但由位置关系可以确定公共点的个数.

(2)从代数角度来看,可以根据直线方程和圆锥曲线方程组成的方程组解的个数确定位置关系.设直线l的方程与圆锥曲线方程联立得到ax2+bx+c=0.

①若a=0,当圆锥曲线是双曲线时,直线l与双曲线的渐近线平行或重合;当圆锥曲线是抛物线时,直线l与抛物线的对称轴平行或重合.

②若

当Δ>0时,直线和圆锥曲线相交于不同两点,相交.

当Δ=0时,直线和圆锥曲线相切于一点,相切.

当Δ<0时,直线和圆锥曲线没有公共点,相离.

直线与圆锥曲线相交的弦长公式:

若直线l与圆锥曲线F(x,y)=0相交于A,B两点,求弦AB的长可用下列两种方法:

(1)求交点法:把直线的方程与圆锥曲线的方程联立,解得点A,B的坐标,然后用两点间距离公式,便得到弦AB的长,一般来说,这种方法较为麻烦.

(2)韦达定理法:

(1)从几何角度来看,直线和圆锥曲线有三种位置关系:相离、相切和相交,相离是直线和圆锥曲线没有公共点,相切是直线和圆锥曲线有唯一公共点,相交是直线与圆锥曲线有两个不同的公共点,并特别注意直线与双曲线、抛物线有唯一公共点时,并不一定是相切,如直线与双曲线的渐近线平行时,与双曲线有唯一公共点,但这时直线与双曲线相交;直线平行(重合)于抛物线的对称轴时,与抛物线有唯一公共点,但这时直线与抛物线相交,故直线与双曲线、抛物线有唯一公共点时可能是相切,也可能是相交,直线与这两种曲线相交,可能有两个交点,也可能有一个交点,从而不要以公共点的个数来判断直线与曲线的位置关系,但由位置关系可以确定公共点的个数.

(2)从代数角度来看,可以根据直线方程和圆锥曲线方程组成的方程组解的个数确定位置关系.设直线l的方程与圆锥曲线方程联立得到ax2+bx+c=0.

①若a=0,当圆锥曲线是双曲线时,直线l与双曲线的渐近线平行或重合;当圆锥曲线是抛物线时,直线l与抛物线的对称轴平行或重合.

②若

当Δ>0时,直线和圆锥曲线相交于不同两点,相交.

当Δ=0时,直线和圆锥曲线相切于一点,相切.

当Δ<0时,直线和圆锥曲线没有公共点,相离.

直线与圆锥曲线相交的弦长公式:

若直线l与圆锥曲线F(x,y)=0相交于A,B两点,求弦AB的长可用下列两种方法:

(1)求交点法:把直线的方程与圆锥曲线的方程联立,解得点A,B的坐标,然后用两点间距离公式,便得到弦AB的长,一般来说,这种方法较为麻烦.

(2)韦达定理法:

不求交点坐标,可用韦达定理求解.若直线l的方程用y=kx+m或x=n表示.

高中数学圆锥曲线题求解答

椭 圆

1. 点P处的切线PT平分△PF1F2在点P处的外角.

2. PT平分△PF1F2在点P处的外角,则焦点在直线PT上的射影H点的轨迹是以长轴为直径的圆,除去长轴的两个端点.

3. 以焦点弦PQ为直径的圆必与对应准线相离.

4. 以焦点半径PF1为直径的圆必与以长轴为直径的圆内切.

5. 若 在椭圆 上,则过 的椭圆的切线方程是 .

6. 若 在椭圆 外 ,则过Po作椭圆的两条切线切点为P1、P2,则切点弦P1P2的直线方程是 .

7. 椭圆 (a>b>0)的左右焦点分别为F1,F 2,点P为椭圆上任意一点 ,则椭圆的焦点角形的面积为 .

8. 椭圆 (a>b>0)的焦半径公式:

, ( , ).

9. 设过椭圆焦点F作直线与椭圆相交 P、Q两点,A为椭圆长轴上一个顶点,连结AP 和AQ分别交相应于焦点F的椭圆准线于M、N两点,则MF⊥NF.

10. 过椭圆一个焦点F的直线与椭圆交于两点P、Q, A1、A2为椭圆长轴上的顶点,A1P和A2Q交于点M,A2P和A1Q交于点N,则MF⊥NF.

11. AB是椭圆 的不平行于对称轴的弦,M 为AB的中点,则 ,

即 。

12. 若 在椭圆 内,则被Po所平分的中点弦的方程是 .

13. 若 在椭圆 内,则过Po的弦中点的轨迹方程是 .

双曲线

1. 点P处的切线PT平分△PF1F2在点P处的内角.

2. PT平分△PF1F2在点P处的内角,则焦点在直线PT上的射影H点的轨迹是以长轴为直径的圆,除去长轴的两个端点.

3. 以焦点弦PQ为直径的圆必与对应准线相交.

4. 以焦点半径PF1为直径的圆必与以实轴为直径的圆相切.(内切:P在右支;外切:P在左支)

5. 若 在双曲线 (a>0,b>0)上,则过 的双曲线的切线方程是 .

6. 若 在双曲线 (a>0,b>0)外 ,则过Po作双曲线的两条切线切点为P1、P2,则切点弦P1P2的直线方程是 .

7. 双曲线 (a>0,b>o)的左右焦点分别为F1,F 2,点P为双曲线上任意一点 ,则双曲线的焦点角形的面积为 .

8. 双曲线 (a>0,b>o)的焦半径公式:( ,

当 在右支上时, , .

当 在左支上时, ,

9. 设过双曲线焦点F作直线与双曲线相交 P、Q两点,A为双曲线长轴上一个顶点,连结AP 和AQ分别交相应于焦点F的双曲线准线于M、N两点,则MF⊥NF.

10. 过双曲线一个焦点F的直线与双曲线交于两点P、Q, A1、A2为双曲线实轴上的顶点,A1P和A2Q交于点M,A2P和A1Q交于点N,则MF⊥NF.

11. AB是双曲线 (a>0,b>0)的不平行于对称轴的弦,M 为AB的中点,则 ,即 。

12. 若 在双曲线 (a>0,b>0)内,则被Po所平分的中点弦的方程是 .

13. 若 在双曲线 (a>0,b>0)内,则过Po的弦中点的轨迹方程是 .

椭圆与双曲线的对偶性质--(会推导的经典结论)

椭 圆

1. 椭圆 (a>b>o)的两个顶点为 , ,与y轴平行的直线交椭圆于P1、P2时A1P1与A2P2交点的轨迹方程是 .

2. 过椭圆 (a>0, b>0)上任一点 任意作两条倾斜角互补的直线交椭圆于B,C两点,则直线BC有定向且 (常数).

3. 若P为椭圆 (a>b>0)上异于长轴端点的任一点,F1, F 2是焦点, , ,则 .

4. 设椭圆 (a>b>0)的两个焦点为F1、F2,P(异于长轴端点)为椭圆上任意一点,在△PF1F2中,记 , , ,则有 .

5. 若椭圆 (a>b>0)的左、右焦点分别为F1、F2,左准线为L,则当0<e≤ 时,可在椭圆上求一点P,使得PF1是P到对应准线距离d与PF2的比例中项.

6. P为椭圆 (a>b>0)上任一点,F1,F2为二焦点,A为椭圆内一定点,则 ,当且仅当 三点共线时,等号成立.

7. 椭圆 与直线 有公共点的充要条件是 .

8. 已知椭圆 (a>b>0),O为坐标原点,P、Q为椭圆上两动点,且 .(1) ;(2)|OP|2+|OQ|2的最大值为 ;(3) 的最小值是 .

9. 过椭圆 (a>b>0)的右焦点F作直线交该椭圆右支于M,N两点,弦MN的垂直平分线交x轴于P,则 .

10. 已知椭圆 ( a>b>0) ,A、B、是椭圆上的两点,线段AB的垂直平分线与x轴相交于点 , 则 .

11. 设P点是椭圆 ( a>b>0)上异于长轴端点的任一点,F1、F2为其焦点记 ,则(1) .(2) .

12. 设A、B是椭圆 ( a>b>0)的长轴两端点,P是椭圆上的一点, , , ,c、e分别是椭圆的半焦距离心率,则有(1) .(2) .(3) .

13. 已知椭圆 ( a>b>0)的右准线 与x轴相交于点 ,过椭圆右焦点 的直线与椭圆相交于A、B两点,点 在右准线 上,且 轴,则直线AC经过线段EF 的中点.

14. 过椭圆焦半径的端点作椭圆的切线,与以长轴为直径的圆相交,则相应交点与相应焦点的连线必与切线垂直.

15. 过椭圆焦半径的端点作椭圆的切线交相应准线于一点,则该点与焦点的连线必与焦半径互相垂直.

16. 椭圆焦三角形中,内点到一焦点的距离与以该焦点为端点的焦半径之比为常数e(离心率).

(注:在椭圆焦三角形中,非焦顶点的内、外角平分线与长轴交点分别称为内、外点.)

17. 椭圆焦三角形中,内心将内点与非焦顶点连线段分成定比e.

18. 椭圆焦三角形中,半焦距必为内、外点到椭圆中心的比例中项.

椭圆与双曲线的对偶性质--(会推导的经典结论)

双曲线

1. 双曲线 (a>0,b>0)的两个顶点为 , ,与y轴平行的直线交双曲线于P1、P2时A1P1与A2P2交点的轨迹方程是 .

2. 过双曲线 (a>0,b>o)上任一点 任意作两条倾斜角互补的直线交双曲线于B,C两点,则直线BC有定向且 (常数).

3. 若P为双曲线 (a>0,b>0)右(或左)支上除顶点外的任一点,F1, F 2是焦点, , ,则 (或 ).

4. 设双曲线 (a>0,b>0)的两个焦点为F1、F2,P(异于长轴端点)为双曲线上任意一点,在△PF1F2中,记 , , ,则有 .

5. 若双曲线 (a>0,b>0)的左、右焦点分别为F1、F2,左准线为L,则当1<e≤ 时,可在双曲线上求一点P,使得PF1是P到对应准线距离d与PF2的比例中项.

6. P为双曲线 (a>0,b>0)上任一点,F1,F2为二焦点,A为双曲线内一定点,则 ,当且仅当 三点共线且 和 在y轴同侧时,等号成立.

7. 双曲线 (a>0,b>0)与直线 有公共点的充要条件是 .

8. 已知双曲线 (b>a >0),O为坐标原点,P、Q为双曲线上两动点,且 .

(1) ;(2)|OP|2+|OQ|2的最小值为 ;(3) 的最小值是 .

9. 过双曲线 (a>0,b>0)的右焦点F作直线交该双曲线的右支于M,N两点,弦MN的垂直平分线交x轴于P,则 .

10. 已知双曲线 (a>0,b>0),A、B是双曲线上的两点,线段AB的垂直平分线与x轴相交于点 , 则 或 .

11. 设P点是双曲线 (a>0,b>0)上异于实轴端点的任一点,F1、F2为其焦点记 ,则(1) .(2) .

12. 设A、B是双曲线 (a>0,b>0)的长轴两端点,P是双曲线上的一点, , , ,c、e分别是双曲线的半焦距离心率,则有(1) .

(2) .(3) .

13. 已知双曲线 (a>0,b>0)的右准线 与x轴相交于点 ,过双曲线右焦点 的直线与双曲线相交于A、B两点,点 在右准线 上,且 轴,则直线AC经过线段EF 的中点.

14. 过双曲线焦半径的端点作双曲线的切线,与以长轴为直径的圆相交,则相应交点与相应焦点的连线必与切线垂直.

15. 过双曲线焦半径的端点作双曲线的切线交相应准线于一点,则该点与焦点的连线必与焦半径互相垂直.

16. 双曲线焦三角形中,外点到一焦点的距离与以该焦点为端点的焦半径之比为常数e(离心率).

(注:在双曲线焦三角形中,非焦顶点的内、外角平分线与长轴交点分别称为内、外点).

17. 双曲线焦三角形中,其焦点所对的旁心将外点与非焦顶点连线段分成定比e.

双曲线焦三角形中,半焦距必为内、外点到双曲线中心的比例中项.

高中数学圆锥曲线解题技巧

设直线和椭圆两个交点(x1,y1)(x2,y2)

kom=(y1+y2)/(x1+x2)

设直线为y=kx+b

带入椭圆,整理好,用韦达定理,求出x1+x2,可以同理求y1+y2

也可以y1+y2=kx1+b+kx2+b=k(x1+x2)+2b,求出

将x1+x2,y1+y2代入 k*kom就可以求出了。

不过最好在用韦达定理的时候加上一条判别式大于等于0的约束条件,否则直线和椭圆不相交

圆锥曲线的知识点及解题方法?

 解答数学圆锥曲线试题,需要较强的代数运算能力和图形认识能力,要能准确地进行数与形的语言转换和运算,推理转换,并在运算过程中注意思维的严密性,以保证结果的完整。下面我给你分享高中数学圆锥曲线解题技巧,欢迎阅读。

高中数学圆锥曲线解题技巧

 1.充分利用几何图形的策略

 解析几何的研究对象就是几何图形及其性质,所以在处理解析几何问题时,除了运用代数方程外,充分挖掘几何条件,并结合平面几何知识,往往能减少计算量。

 例:设直线3x+4y+m=0与圆x+y+x-2y=0相交于P、Q两点,O为坐标原点,若OP?OQ,求m的值。

 2.充分利用韦达定理的策略

 我们经常设出弦的端点坐标但不求它,而是结合韦达定理求解,这种方法在有关斜率、中点等问题中常常用到。

 例:已知中心在原点O,焦点在y轴上的椭圆与直线y=x+1相交于P、Q两点,且OP?OQ,|PQ|=,求此椭圆方程。

 3.充分利用曲线方程的策略

 例:求经过两已知圆C:x+y-4x+2y=0和C:x+y-2y-4=0的交点,且圆心在直线l:2x+4y-1=0上的圆的方程。

 4.充分利用椭圆的参数方程的策略

 椭圆的参数方程涉及正、余弦,利用正、余弦的有界性,可以解决相关的求最值的问题。这也就是我们常说的三角代换法。

 例:P为椭圆+=1上一动点,A为长轴的右端点,B为短轴的上端点,求四边形OAPB面积的最大值及此时点P的坐标。

 5.线段长的几种简便计算策略

 (1)充分利用现成结果,减少运算过程。

 求直线与圆锥曲线相交的弦AB长:把直线方程y=kx+b代入圆锥曲线方程中,得到型如ax+bx+c=0的方程,方程的两根设为x,x,判别式为△,则|AB|=?|x-x|=?,若直接用结论,能减少配方、开方等运算过程。

 例:求直线x-y+1=0被椭圆x+4y=16所截得的线段AB的长。

 (2)结合图形的特殊位置关系,减少运算。

 在求过圆锥曲线焦点的弦长时,由于圆锥曲线的定义都涉及焦点,结合图形运用圆锥曲线的定义,可回避复杂运算。

 例:F、F是椭圆+=1的两个焦点,AB是经过F的弦,若|AB|=8,求|FA|+|FB|的值。

 (3)利用圆锥曲线的定义,把到焦点的距离转化为到准线的距离。

 例:点A(3,2)为定点,点F是抛物线y=4x的焦点,点P在抛物线y=4x上移动,若|PA|+|PF|取得最小值,求点P的坐标。

高中数学圆锥曲线题型

 1.中点弦问题

 具有斜率的弦中点问题,常用设而不求法(点差法):设曲线上两点为(x,y),(x,y),代入方程,然后两方程相减,再应用中点关系及斜率公式,消去四个参数。

 例:给定双曲线x-=1,过A(2,1)的直线与双曲线交于两点P和P,求线段PP的中点P的轨迹方程。

 2.焦点三角形问题

 椭圆或双曲线上一点P,与两个焦点F、F构成的三角形问题,常用正、余弦定理。

 例:设P(x,y)为椭圆+=1上任一点,F(-c,0),F(c,0)为焦点,?PFF=?,?PFF=?。

 (1)求证:离心率e=;

 (2)求|PF|+|PF|的最值。

 3.直线与圆锥曲线位置关系问题

 直线与圆锥曲线的位置关系的基本方法是解方程组,进而转化为一元二次方程后利用判别式,应特别注意数形结合的办法。

 例:抛物线方程y=p(x+1)(p>0),直线x+y=t与x轴的交点在抛物线准线的右边。

 (1)求证:直线与抛物线总有两个不同交点。

 (2)设直线与抛物线的交点为A、B,且OA?OB,求p关于t的函数f(t)的表达式。

 4.圆锥曲线的有关最值问题

 圆锥曲线中的有关最值问题,常用代数法和几何法解决。若命题的条件和结论具有明显的几何意义,一般可用图像性质来解决。若命题的条件和结论体现明确的函数关系式,则可建立目标函数(通常利用二次函数,三角函数,均值不等式)求最值。下题中的(1),可先设法得到关于a的不等式,通过解不等式求出a的范围,即:?求范围,找不等式?。或者将a表示为另一个变量的函数,利用求函数的值域求出a的范围。对于(2),首先要把△NAB的面积表示为一个变量的函数,然后再求它的最大值,即?最值问题,函数思想?。

 例:已知抛物线y=2px(p>0),过M(a,0)且斜率为1的直线L与抛物线交于不同的两点A、B,|AB|?2p,(1)求a的取值范围;(2)若线段AB的垂直平分线交x轴于点N,求△NAB面积的最大值。

 5.求曲线的方程问题

 (1)曲线的形状已知,这类问题一般可用待定系数法解决。

 例:已知直线L过原点,抛物线C的顶点在原点,焦点在x轴正半轴上。若点A(-1,0)和点B(0,8)关于L的对称点都在C上,求直线L和抛物线C的方程。

 (2)曲线的形状未知,求轨迹方程。

 例:已知直角坐标平面上点Q(2,0)和圆C:x+y=1,动点M到圆C的切线长与|MQ|的比等于常数?(?>0),求动点M的轨迹方程,并说明它是什么曲线。

 6.存在两点关于直线对称问题

 在曲线上两点关于某直线对称问题,可按如下方法解题:求两点所在的直线,求这两直线的交点,使这交点在圆锥曲线形内。当然也可利用韦达定理并结合判别式来解决。

 例:已知椭圆C的方程+=1,试确定m的取值范围,使得对于直线y=4x+m,椭圆C上有不同两点关于直线对称。

 7.两线段垂直问题

 圆锥曲线两焦半径互相垂直问题,常用k?k==-1来处理或用向量的坐标运算来处理。

高中数学圆锥曲线秒杀技巧是什么?

解题思路:把直线方程和圆锥曲线方程联立,利用韦达定理和一元二次方程的根的判别式和题目要求来做,这就是必须的。

解圆锥曲线问题常用以下方法:

1、定义法

(1)椭圆有两种定义。第一定义中,r1+r2=2a。第二定义中,r1=ed1 r2=ed2。

(2)双曲线有两种定义。第一定义中,,当r1>r2时,注意r2的最小值为c-a:第二定义中,r1=ed1,r2=ed2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。

(3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。

2、韦达定理法

因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。

3、解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x1,y1),B(x2,y2),弦AB中点为M(x0,y0),将点A、B坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有:

(1)与直线相交于A、B,设弦AB中点为M(x0,y0),则有。

(2)与直线l相交于A、B,设弦AB中点为M(x0,y0)则有

(3)y2=2px(p>0)与直线l相交于A、B设弦AB中点为M(x0,y0),则有2y0k=2p,即y0k=p.

高中数学圆锥曲线秒杀技巧是:

1、待定系数法

在解答求解待定系数的题型的时候,一定要灵活运用圆锥曲线的性质公式去求解。在选择填空题中也可以设置特殊值法进而快速求得这些待定系数的表达方式或者数值。

2、齐次方程法

在应用这些方程和技巧求解题目的时候特别要注意所解题目曲线的特征和特殊要求,利用曲线的性质在结合齐次方程便可快速的求解题目。

3、韦达定理法

可以通过通过韦达定理的逆定理,可以利用两数的和积关系构造一元二次方程。直线与曲线方程联立,交点坐标设而不求,用韦达定理写出转化完成。

4、点差法

运用点差法解决中点弦问题,利用韦达定理、设而不求方法和整体思想设计合理的计算程序,化简计算,准确求解,运算是解析几何学习中的难点,平时必须认真训练、仔细体会算理和初步掌握一些运算技巧。

5、距离转化法

圆锥曲线题型最主要的就是要能够理解图形和想象到平面图形的位置关系以及方程中系数对于图像的约束,距离转化法就是桥面运用了数形结合的原理快速解题的一种技巧。

文章标签: # 直线 # 双曲线 # 椭圆