您现在的位置是: 首页 > 教育分析 教育分析
历年文科数学高考题,历年文科数学高考真题
tamoadmin 2024-06-23 人已围观
简介1.2022全国新高考Ⅰ卷文科数学试题及答案解析2.求数学大神帮忙,解答一道高考数学题,2014年全国卷新课标2高考文科18题。下面是题目3.2022全国新高考Ⅱ卷文科数学试题及答案解析4.2012广东高考文科数学第三题求向量AC。向量AC求法:“不是后面坐标减去前面坐标咩?”若不是,那什么时...5.2014年高考数学全国卷题型 文科2012年普通高等学校招生全国统一考试福建卷(数学文)word
1.2022全国新高考Ⅰ卷文科数学试题及答案解析
2.求数学大神帮忙,解答一道高考数学题,2014年全国卷新课标2高考文科18题。下面是题目
3.2022全国新高考Ⅱ卷文科数学试题及答案解析
4.2012广东高考文科数学第三题求向量AC。向量AC求法:“不是后面坐标减去前面坐标咩?”若不是,那什么时...
5.2014年高考数学全国卷题型 文科
2012年普通高等学校招生全国统一考试福建卷(数学文)word版
数学试题(文史类)
第I卷(选择题?共60分)
一、选择题:本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.复数(2+i)2等于
A.3+4i B.5+4i C.3+2i D.5+2i
2.已知集合M={1,2,3,4},N={-2,2},下列结论成立的是
A.N?M B.M∪N=M C.M∩N=N D.M∩N={2}
3.已知向量a=(x-1,2),b=(2,1),则a⊥b的充要条件是
A.x=- B.x-1 C.x=5 D.x=0
4.?一个几何体的三视图形状都相同,大小均等,那么这个几何体不可一世
A?球? B? 三棱锥? C? 正方体?D?圆柱?
5?已知双曲线?-?=1的右焦点为(3,0),则该双曲线的离心率等于
A ? B C ?D ?
6? 阅读右图所示的程序框图,运行相应的程序,输出s值等于?
A?-3? B? -10? C? 0 D? -2?
7.直线x+?-2=0与圆x2+y2=4相交于A,B两点,则弦AB的长度等于
A.? B?.?C.? D.1
8.函数f(x)=sin(x-?)的图像的一条对称轴是
A.x= B.x= C.x=- D.x=-?
9.设?,则f(g(π))的值为
A?1 ? B? 0 ?C? -1 ?D? π
10.若直线y=2x上存在点(x,y)满足约束条件?则实数m的最大值为
A.-1? B.1? C. D.2
11.数列{an}的通项公式?,其前n项和为Sn,则S2012等于
A.1006 B.2012 C.503 D.0
12.已知f(x)=x?-6x?+9x-abc,a<b<c,且f(a)=f(b)=f(c)=0.现给出如下结论:①f(0)f(1)>0;②f(0)f(1)<0;③f(0)f(3)>0;④f(0)f(3)<0.
其中正确结论的序号是
A.①③ B.①④ C.②③ D.②④
第Ⅱ卷(非选择题共90分)
二、填空题:本大题共4小题,每小题4分,共16分。把答案填在答题卡的相应位置。
13.在△ABC中,已知∠BAC=60°,∠ABC=45°,?,则AC=_______。
14.一支田径队有男女运动员98人,其中男运动员有56人。按男女比例用分层抽样的方法,从全体运动员中抽出一个容量为28的样本,那么应抽取女运动员人数是_______。
15.已知关于x的不等式x2-ax+2a>0在R上恒成立,则实数a的取值范围是_________。
16.某地图规划道路建设,考虑道路铺设方案,方案设计图中,求表示城市,两点之间连线表示两城市间可铺设道路,连线上数据表示两城市间铺设道路的费用,要求从任一城市都能到达其余各城市,并且铺设道路的总费用最小。例如:在三个城市道路设计中,若城市间可铺设道路的路线图如图1,则最优设计方案如图2,此时铺设道路的最小总费用为10.
现给出该地区可铺设道路的线路图如图3,则铺设道路的最小总费用为____________。
三、解答题:本大题共6小题,共74分。解答应写出文字说明,证明过程或演算步骤。
17.(本小题满分12分)在等差数列{an}和等比数列{bn}中,a1=b1=1,b4=8,{an}的前10项和S10=55.
(Ⅰ)求an和bn;
(Ⅱ)现分别从{an}和{bn}的前3项中各随机抽取一项,写出相应的基本事件,并求这两项的值相等的概率。
18.(本题满分12分)
某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:
(I)求回归直线方程?=bx+a,其中b=-20,a=?-b?;
(II)预计在今后的销售中,销量与单价仍然服从(I)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本)
19.(本小题满分12分)
如图,在长方体ABCD-A1B1C1D1中,AB=AD=1,AA1=2,M为棱DD1上的一点。
(1) 求三棱锥A-MCC1的体积;
(2) 当A1M+MC取得最小值时,求证:B1M⊥平面MAC。
20.?(本小题满分13分)
某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数。
(1)sin213°+cos217°-sin13°cos17°
(2)sin215°+cos215°-sin15°cos15°
(3)sin218°+cos212°-sin18°cos12°
(4)sin2(-18°)+cos248°-?sin2(-18°)cos248°
(5)sin2(-25°)+cos255°-?sin2(-25°)cos255°
Ⅰ?试从上述五个式子中选择一个,求出这个常数?
Ⅱ?根据(Ⅰ)的计算结果,将该同学的发现推广位三角恒等式,并证明你的结论。
21.(本小题满分12分)
如图,等边三角形OAB的边长为?,且其三个顶点均在抛物线E:x2=2py(p>0)上。
(1) 求抛物线E的方程;
(2) 设动直线l与抛物线E相切于点P,与直线y=-1相较于点Q。证明以PQ为直径的圆恒过y轴上某定点。
22.(本小题满分14分)
已知函数?且在?上的最大值为?,
(1)求函数f(x)的解析式;
(2)判断函数f(x)在(0,π)内的零点个数,并加以证明。
2012年普通高等学校招生全国统一考试福建卷(数学文)word版
数学试题(文史类)
第I卷(选择题?共60分)
一、选择题:本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.复数(2+i)2等于
A.3+4i B.5+4i C.3+2i D.5+2i
2.已知集合M={1,2,3,4},N={-2,2},下列结论成立的是
A.N?M B.M∪N=M C.M∩N=N D.M∩N={2}
3.已知向量a=(x-1,2),b=(2,1),则a⊥b的充要条件是
A.x=- B.x-1 C.x=5 D.x=0
4.?一个几何体的三视图形状都相同,大小均等,那么这个几何体不可一世
A?球? B? 三棱锥? C? 正方体?D?圆柱?
5?已知双曲线?-?=1的右焦点为(3,0),则该双曲线的离心率等于
A ? B C ?D ?
6? 阅读右图所示的程序框图,运行相应的程序,输出s值等于?
A?-3? B? -10? C? 0 D? -2?
7.直线x+?-2=0与圆x2+y2=4相交于A,B两点,则弦AB的长度等于
A.? B?.?C.? D.1
8.函数f(x)=sin(x-?)的图像的一条对称轴是
A.x= B.x= C.x=- D.x=-?
9.设?,则f(g(π))的值为
A?1 ? B? 0 ?C? -1 ?D? π
10.若直线y=2x上存在点(x,y)满足约束条件?则实数m的最大值为
A.-1? B.1? C. D.2
11.数列{an}的通项公式?,其前n项和为Sn,则S2012等于
A.1006 B.2012 C.503 D.0
12.已知f(x)=x?-6x?+9x-abc,a<b<c,且f(a)=f(b)=f(c)=0.现给出如下结论:①f(0)f(1)>0;②f(0)f(1)<0;③f(0)f(3)>0;④f(0)f(3)<0.
其中正确结论的序号是
A.①③ B.①④ C.②③ D.②④
第Ⅱ卷(非选择题共90分)
二、填空题:本大题共4小题,每小题4分,共16分。把答案填在答题卡的相应位置。
13.在△ABC中,已知∠BAC=60°,∠ABC=45°,?,则AC=_______。
14.一支田径队有男女运动员98人,其中男运动员有56人。按男女比例用分层抽样的方法,从全体运动员中抽出一个容量为28的样本,那么应抽取女运动员人数是_______。
15.已知关于x的不等式x2-ax+2a>0在R上恒成立,则实数a的取值范围是_________。
16.某地图规划道路建设,考虑道路铺设方案,方案设计图中,求表示城市,两点之间连线表示两城市间可铺设道路,连线上数据表示两城市间铺设道路的费用,要求从任一城市都能到达其余各城市,并且铺设道路的总费用最小。例如:在三个城市道路设计中,若城市间可铺设道路的路线图如图1,则最优设计方案如图2,此时铺设道路的最小总费用为10.
现给出该地区可铺设道路的线路图如图3,则铺设道路的最小总费用为____________。
三、解答题:本大题共6小题,共74分。解答应写出文字说明,证明过程或演算步骤。
17.(本小题满分12分)在等差数列{an}和等比数列{bn}中,a1=b1=1,b4=8,{an}的前10项和S10=55.
(Ⅰ)求an和bn;
(Ⅱ)现分别从{an}和{bn}的前3项中各随机抽取一项,写出相应的基本事件,并求这两项的值相等的概率。
18.(本题满分12分)
某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:
(I)求回归直线方程?=bx+a,其中b=-20,a=?-b?;
(II)预计在今后的销售中,销量与单价仍然服从(I)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本)
19.(本小题满分12分)
如图,在长方体ABCD-A1B1C1D1中,AB=AD=1,AA1=2,M为棱DD1上的一点。
(1) 求三棱锥A-MCC1的体积;
(2) 当A1M+MC取得最小值时,求证:B1M⊥平面MAC。
20.?(本小题满分13分)
某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数。
(1)sin213°+cos217°-sin13°cos17°
(2)sin215°+cos215°-sin15°cos15°
(3)sin218°+cos212°-sin18°cos12°
(4)sin2(-18°)+cos248°-?sin2(-18°)cos248°
(5)sin2(-25°)+cos255°-?sin2(-25°)cos255°
Ⅰ?试从上述五个式子中选择一个,求出这个常数?
Ⅱ?根据(Ⅰ)的计算结果,将该同学的发现推广位三角恒等式,并证明你的结论。
21.(本小题满分12分)
如图,等边三角形OAB的边长为?,且其三个顶点均在抛物线E:x2=2py(p>0)上。
(1) 求抛物线E的方程;
(2) 设动直线l与抛物线E相切于点P,与直线y=-1相较于点Q。证明以PQ为直径的圆恒过y轴上某定点。
22.(本小题满分14分)
已知函数?且在?上的最大值为?,
(1)求函数f(x)的解析式;
(2)判断函数f(x)在(0,π)内的零点个数,并加以证明。
2022全国新高考Ⅰ卷文科数学试题及答案解析
2022年全国高考将在6月7日开考,相信大家都非常想要知道四川高考文科数学和理科数学科目的答案及解析,我就为大家带来2022年四川高考数学答案解析及试卷汇总。
2022年四川高考答案及试卷汇总
点击即可查看
大家可以在本文 前 后输入高考分数查看能上的大学,了解更多院校详细信息。
一、四川高考数学真题试卷
文科数学
理科数学
二、四川高考数学真题 答案 解析
文科数学
理科数学
求数学大神帮忙,解答一道高考数学题,2014年全国卷新课标2高考文科18题。下面是题目
每一年的高考试题都具体复习参考的意义,有利于帮助考生了解高考出题方向,下面是我分享的2022全国新高考Ⅰ卷文科数学试题及答案解析,欢迎大家阅读。
2022全国新高考Ⅰ卷文科数学试题及答案解析
2022全国新高考Ⅰ卷文科数学试题还未出炉,待高考结束后,我会第一时间更新2022全国新高考Ⅰ卷文科数学试题,供大家对照、估分、模拟使用。
高考数学必考知识点
圆的标准方程(_-a)2+(y-b)2=r2注:(a,b)是圆心坐标
圆的一般方程_2+y2+D_+Ey+F=0注:D2+E2-4F>0
抛物线标准方程y2=2p_y2=-2p__2=2py_2=-2py
直棱柱侧面积S=c_h斜棱柱侧面积S=c'_h
正棱锥侧面积S=1/2c_h'正棱台侧面积S=1/2(c+c')h'
圆台侧面积S=1/2(c+c')l=pi(R+r)l球的表面积S=4pi_r2
某些数列前n项和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4 1_2+2_3+3_4+4_5+5_6+6_7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径
余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角
圆的标准方程 (_-a)2+(y-b)2=r2 注:(a,b)是圆心坐标
圆的一般方程 _2+y2+D_+Ey+F=0 注:D2+E2-4F>0
抛物线标准方程 y2=2p_ y2=-2p_ _2=2py _2=-2py
直棱柱侧面积 S=c_h 斜棱柱侧面积 S=c'_h
正棱锥侧面积 S=1/2c_h' 正棱台侧面积 S=1/2(c+c')h'
圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pi_r2
圆柱侧面积 S=c_h=2pi_h 圆锥侧面积 S=1/2_c_l=pi_r_l
弧长公式 l=a_r a是圆心角的弧度数r >0 扇形面积公式 s=1/2_l_r
锥体体积公式 V=1/3_S_H 圆锥体体积公式 V=1/3_pi_r2h
斜棱柱体积 V=S'L 注:其中,S'是直截面面积, L是侧棱长
柱体体积公式 V=s_h 圆柱体 V=pi_r2h
高考数学答题窍门
1、审题要慢,答题要快
有些考生只知道一味求快,往往题意未清,便匆忙动笔,结果误入歧途,即所谓欲速则不达,看错一个字可能会遗憾终生,所以审题一定要慢,有了这个“慢”,才能形成完整的合理的解题策略,才有答题的“快”。
2、运算要准,胆子要大
高考没有足够的时间让你反复验算,更不容你一再地变换解题 方法 ,往往是拿到一个题目,凭感觉选定一种方法就动手做,这时除了你的每一步运算务求正确外,还要求把你当时的解法坚持到底,也许你选择的不是最好的方法,但如回头重来将会花费更多的时间,当然坚持到底并不意味着钻牛角尖,一旦发现自己走进死胡同,还是要立刻迷途知返。
3、先易后难,敢于放弃
能够增强信心,使思维趋向,对发挥水平极为有利;另一方面如果先做难题,可能会浪费好多时间,即使难关被攻克,却已没有时间去得那些易得的分数,所以关键时刻,敢于放弃,也是一种明智的选择。有些解答题第一问就很难,这时可以先放弃第一问,而直接使用第一问的结论解决第2问、第3问。
4、先熟后生,合理用时
面对熟悉的题目,自然象吃了定心丸,做起来得心应手,会使你获得好心情,并且可以在最短时间内完成,留下更多的时间来思考那些不熟悉的题目。有些题目需花很多时间却只得到很少分数,有些题目只要花很少时间却有很高的分值。所以应先把时间用在那些较易题或分值较高题目上,最大限度地提高时间的利用率。
2022全国新高考Ⅰ卷文科数学试题及答案解析相关 文章 :
★ 2022年高考乙卷数学真题试卷
★ 2022年新高考Ⅱ卷语文题目与答案解析
★ 2022年新高考Ⅰ卷语文题目与答案参考
★ 2022全国高考试卷分几类
★ 2022高考历年历史试卷分析(全国1卷)
★ 2022高考数学必考知识点归纳最新
★ 2022高考数学答题技巧
★ 2022年高考数学必考知识点总结最新
★ 2021新高考全国1卷数学真题及答案
★ 2022高考文综理综各题型分数值一览
2022全国新高考Ⅱ卷文科数学试题及答案解析
这题考查直线与平面垂直,点到平面的距离的求法,考查空间想象能力以及计算能力.
设BD与AC的交点为O,连结EO,通过直线与平面平行的判定定理证明PB∥平面AEC;第二问通过AP=1,AD根号3,三棱锥P-ABD体积V=根号3/4,求出AB,作AH⊥PB角PB与H。
解: (1)证明:设BD与AC的交点为O,连结EO,
∵ABCD是矩形,∴O为BD中点,这是详细答案你看下。有详细的解答过程及分析。四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD中点。(1)证明:PB∥平面AEC;(2)设AP=1,AD=根号3,三棱锥P-ABD体积V=根号3/4.求A到平面PBC距离。
你自己琢磨下答案,不明白可以继续问我哦,加油~有帮助的话希望能给你个采纳哦,祝你学习进步!
2012广东高考文科数学第三题求向量AC。向量AC求法:“不是后面坐标减去前面坐标咩?”若不是,那什么时...
在高考结束后,很多考生都会对答案,提前预估自己的分数,这样方便大家提前准备志愿填报。下面是我分享的2022全国新高考Ⅱ卷文科数学试题及答案解析,欢迎大家阅读。
2022全国新高考Ⅱ卷文科数学试题及答案解析
2022全国新高考Ⅱ卷文科数学试题还未出炉,待高考结束后,我会第一时间更新2022全国新高考Ⅱ卷文科数学试题,供大家对照、估分、模拟使用。
2022高考数学大题题型 总结
一、三角函数或数列
数列是高考必考的内容之一。高考对这个知识点的考查非常全面。每年都会有等差数列,等比数列的考题,而且经常以综合题出现,也就是说把数列知识和指数函数、对数函数和不等式等其他知识点综合起来。
近几年来,关于数列方面的考题题主要包含以下几个方面:
(1)数列基本知识考查,主要包括基本的等差数列和等比数列概念以及通项公式和求和公式。
(2)把数列知识和其他知识点相结合,主要包括数列知识和函数、方程、不等式、三角、几何等其他知识相结合。
(3)应用题中的数列问题,一般是以增长率问题出现。
二、立体几何
高考立体几何试题一般共有4道(选择、填空题3道,解答题1道),共计总分27分左右,考查的知识点在20个以内。选择填空题考核立几中的计算型问题,而解答题着重考查立几中的逻辑推理型问题,当然,二者均应以正确的空间想象为前提。随着新的课程改革的进一步实施,立体几何考题正朝着多一点思考,少一点计算的发展。从历年的考题变化看,以简单几何体为载体的线面位置关系的论证,角与距离的探求是常考常新的热门话题。
三、统计与概率
1.掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题。
2.理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题。
3.理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题。
4.掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题。
5.了解随机事件的发生存在着规律性和随机事件概率的意义。
6.了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率。
7.了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率。
8.会计算事件在n次独立重复试验中恰好发生k次的概率.
四、解析几何(圆锥曲线)
高考解析几何剖析:
1、很多高考问题都是以平面上的点、直线、曲线(如圆、椭圆、抛物线、双曲线)这三大类几何元素为基础构成的图形的问题;
2、演绎规则就是代数的演绎规则,或者说就是列方程、解方程的规则。
有了以上两点认识,我们可以毫不犹豫地下这么一个结论,那就是解决高考解析几何问题无外乎做两项工作:
(1)、几何问题代数化。
(2)、用代数规则对代数化后的问题进行处理。
五、函数与导数
导数是微积分的初步知识,是研究函数,解决实际问题的有力工具。在高中阶段对于导数的学习,主要是以下几个方面:
1.导数的常规问题:
(1)刻画函数(比初等 方法 精确细微);
(2)同几何中切线联系(导数方法可用于研究平面曲线的切线);
(3)应用问题(初等方法往往技巧性要求较高,而导数方法显得简便)等关于次多项式的导数问题属于较难类型。
2.关于函数特征,最值问题较多,所以有必要专项讨论,导数法求最值要比初等方法快捷简便。
3.导数与解析几何或函数图象的混合问题是一种重要类型,也是高考中考察综合能力的一个方向,应引起注意。
2022高考解答题评分标准
解答题阅卷的评分原则一般是:第一问,错或未做,而第二问对,则第二问得分全给;前面错引起后面方法用对但结果出错,则后面给一半分。
解题策略:
(1)常见失分因素:
1.对题意缺乏正确的理解,应做到慢审题快做题;
2.公式记忆不牢,考前一定要熟悉公式、定理、性质等;
3.思维不严谨,不要忽视易错点;
4.解题步骤不规范,一定要按课本要求,否则会因不规范答题失分,避免“对而不全”如解概率题,要给出适当的文字说明,不能只列几个式子或单纯的结论,表达不规范、字迹不工整等非智力因素会影响阅卷老师的“感情分”;
5.计算能力差失分多,会做的一定不能放过,不能一味求快,例如平面解析中的圆锥曲线问题就要求较强的运算能力;
6.轻易放弃试题,难题不会做,可分解成小问题,分步解决,如最起码能将文字语言翻译成符号语言、设应用题未知数、设轨迹的动点坐标等,都能拿分。也许随着这些小步骤的罗列,还能悟出解题的灵感。
2022全国新高考Ⅱ卷文科数学试题及答案解析相关 文章 :
★ 2022高考全国甲卷数学试题及答案
★ 2022年全国乙卷高考语文真题试卷及答案解析(未公布)
★ 2022年浙江高考数学试卷
★ 2022新高考2卷语文试题及答案一览
★ 2022全国高考试卷分几类
★ 2022高考数学必考知识点归纳最新
★ 2022年高考数学必考知识点总结最新
★ 2022高考文综理综各题型分数值一览
★ 2022年新高考Ⅰ卷语文题目与答案参考
★ 2022新高考Ⅱ卷选择创造未来作文12篇
2014年高考数学全国卷题型 文科
∵向量AB=(1,2),BC=(3,4)
∴向量AC=向量AB+ BC =(1+3,2+4)=(4,6)
选择A
向量AC求法:已知A,C坐标时,用C坐标减A坐标;
本题是已知,向量AB=(1,2),BC=(3,4)求向量AC
就得用向量合成的方法,解题时要注意向量的方向
向量AC=向量AB+BC
2014年高考数学 文科全国卷题型,主要有三种:选择题、填空题和解答题。
一、选择题:共12小题,每小题5分。
二、填空题:共4小题,每小题5分。
三、解答题:解答应写出文字说明.证明过程或演算步骤。
1、必修课题目5小题,每题12分;
2、选修课题目3小题,但只要求做其中的一题,计10分。
3道选修题:
①选修4-1:几何证明选讲;
②选修4-4:坐标系与参数方程;
③选修4-5:不等式选讲。
具体题目请参见:百度文库